User:Al Da Best/devlog

< User:Al Da Best
Revision as of 19:11, 30 May 2012 by Al Da Best (talk | contribs) (Filled gaps and updated current status)

Google Summer of Code 2012


Status: Creating patch for implementing variable gravity. Also working on Implementing SMP for Windows, as this would be useful for potentially cycle-intensive tasks such as simulations.

TODO: Gain Commit access ASAP

Coding Environments Status: VS2010x64 : Success, no bullet. Fedora 17 : Success, Bullet running.


April 2012

BRLCAD compiled and run with Windows Visual Studio 10 x64 Debug

May 2012

8th : Updated Wiki pages

9th-10th : Tried to compile BRLCAD with bullet on VS2010, consistently recieved 63/70+ errors for debug/release versions. Using linux as development environment until I have a chance to fix issues.

11th-12th : Setup a Fedora 16 environment with BRLCAD compiled and running simulations.

13th-16th : Testing various simulations, spent time looking through the simulation code to learn more about how it currently works and how to best implement new features.

24-25th : Reinstalling Windows on my SSD (From HDD), computer unavailable for a day 26th : Everything back to normal with PC, build times using VS2010 decreased from 3+ hours to 9 minutes (from clean)

27th-29th : Fixed issues with SA/Centroid functions for Ellipsoid Primitive patch

29th : Patch for Surface Area for Ellipsoid Primitive accepted
29th : Downloaded Fedora 17 and began to set it up for brlcad development

30th : Successfully built and installed brlcad on Fedora 17, as well as ran some small test simulations without issue.
30th : Working on a function to calculate the gravitational force between every object in the simulation, in order to be able to calculate the acceleration between them.

Development Schedule

(Unless otherwise specified, 40+ hours of work to be assumed):

23rd April – 5th May

  • Flesh out any last details in project, have all objectives clear and the schedule complete.
  • Gain commit access before or during this point
  • Before the official start of coding, create basic, general (and some specific) unit tests for functions that will be implemented, such as testing the variable gravity, the resolving of drag forces, the moments and couples calculated, and so forth.

5th May – 21st May

  • Learn as much about any relevant libraries such as Bullet, and BRL-CAD libraries such as librt and libged as I can, to enable me to be able to get straight into coding with the knowledge of what is already there and how to use it.
  • Start writing function outlines, header files to make it clearer as to what goes where and how to reuse code efficiently.
  • Iron out any current bugs in the simulation files, to ensure a fully working simulation environment.

21st May – 28th May

  • Coding begins. Start by working on the gravitational system as this will be the easiest to implement and so will take the shortest amount of time, and will make sure I am completely familiar with the code.

28th May – 4th June

  • Milestone 1: Gravitational system complete and fully bug tested.
  • Once milestone 1 is reached, begin work on the fluid system, starting with functions to calculate drag on surfaces

4th June – 11th June

  • Exam period starts at University, limited time available.
  • In available time, work on drag functions and start to implement functions to resolve the forces from the drag (In x,y and z directions)

11th June – 18th June

  • Exam period ends
  • Carry on implementing functions to resolve forces and start on functions to resolve moment forces to show rotation in the simulation

18th June – 25th June

  • Continue working on the fluid system and begin bug testing
  • After 22nd June assume 50+ hours working, to make up for lost time during University term

25th June – 2nd July

  • Milestone 2: Fluid system complete and fully bug tested.
  • Start work on the collision system

2nd July – 9th July

  • Preparing for mid-term evaluations, fixing all current code up to this point which will be around two thirds of the whole project
  • Continue work on the collision system

9th July - 16th July

  • Continue work on the collision system

16th July – 23rd July

  • Milestone 3: Collision system completed
  • From this point forward, start black box testing to ensure everything works

23rd July – 30th July

  • Milestone 4: Black box testing complete
  • Start white box testing to ensure code is of a high standard

30th July – 3rd August

  • Milestone 5: White box testing complete
  • All following time is a buffer zone. If everything complete, begin work on adding more functionality to the fluid system, namely the underwater physics

3rd August – 17th August

  • I will be in Germany during this period on holiday. I will however, still have a laptop as well as internet access so although this is a critical time with respect to final evaluations and so on, there is no reason for me to not be able to work
  • Time spent cleaning up code if needed, write documentation to enable users to easily utilise any of the functionality of the simulation system.

17th August – 24th August

  • Any last minute fixes are made, final evaluations sorted and project finished.
  • Milestone 6: Project finish, submit evaluations.