Difference between revisions of "BRL-CAD Primitives"

From BRL-CAD
(ebm)
m (Arbitrary convex polyhedra)
 
(37 intermediate revisions by 12 users not shown)
Line 1: Line 1:
 
[[category:MGED| Primitives]]
 
[[category:MGED| Primitives]]
  
These are primitive objects that can be created in mged.
+
This article provides an overview of various types of geometric primitive objects that can be added to a BRL-CAD geometry file. The shape, size, location and orientation of each such object are defined by a set of parameters/properties that are specific to its type, which are discussed in the corresponding section below.
  
Objects can be created in any of the following ways:  (note: are there more? get? load from file?)
+
For general discussions on using MGED to create primitive objects, view their properties, and modify or move them, see:
;make : the mged make command creates the object with default dimensions
+
* [[Creating_primitive_objects]]
;in : the mged in command interactively prompts for dimensions not already supplied as arguments
+
* [[Determining_the_properties_of_primitive objects]]
;form :the graphical primitive editor form (* some objects not fully supported)
+
* [[Changing_the_properties_of_primitive objects]]
;create : the graphical create menu
 
  
When an object is selected from the create menu, you are prompted for a name, and then dropped into the primitive editor form; however, if the objec type has no form, create will do about the same as make.  Some derivative objects do not have their own form, and the primitive editor will use the base object's form.  Most parameters  (including ones not editable from a form) have special items on the edit menu.
+
also see:
 +
* [[A Survey of Implicit Constraints in Primitives]]
 +
;
  
See also [[A Survey of Implicit Constraints in Primitives]]
+
= Arbitrary convex polyhedra =
  
=Arbs=
+
An '''arbitrary convex polyhedron''' ('''arb''') is a geometric volume that is completely enclosed by a set of 3-dimensional planes. Each has a set of straight-edged, flat '''faces''' outlined by the intersections of those planes. The intersection of each pair of planes is a line whose intersections with other planes defines a pair of '''vertices'''. The line segment between those two vertices is an '''edge''' of the polyhedron that is shared by two faces. Each vertex is common to an equal number (at least three) of faces and edges.
Objects with an arbitrary number of points and flat faces...
 
==arb8==
 
Arbitrary straight-edged shape with 8 vertices.  
 
  
;Handled by: make in form create
+
For example, a rectangular parallelepiped is enclosed by three orthogonal pairs of parallel planes. Their intersections define six faces, each with four edges and four vertices. There are a total of 12 edges (each shared by two faces) and 8 vertices (each shared by three faces and three edges).
;Arguments: 8 Vertices in the following order: 1234 vertices for the front face, starting at bottom left, counterclockwise; then 5678 vertices for the rear face, starting at bottom left, counterclockwise.
+
 
;Example:
+
The BRL-CAD geometry file format defines two types of records for such polyhedra:
in unitcube.s arb8  0 0 0  1 0 0  1 0 1  0 0 1  0 1 0  1 1 0  1 1 1  0 1 1
+
* [[#ARB8 Records|'''arb8'''s]] are specified by a set of eight vertices.
creates the unit cube (first vertex at the origin, extends for 1 unit in x, y and z direction).
+
* [[#ARBN Records|'''arbn'''s]] are specified by a set of intersecting planes, each defined by four coefficients.
 +
 
 +
Although any polyhedron can be defined and stored as an arbn, the arb8 record type is more commonly employed because it is simpler to work with and still accommodates most constructive solid geometry applications.
 +
 
 +
== ARB8 Records ==
 +
 
 +
An '''arb8''' record is specified by a set of eight {X, Y, Z} vertices designated V1 through V8, which need not all be unique. BRL-CAD uses such records to represent polyhedra having four, five or six faces:
 +
 
 +
* '''arb8''' shapes have eight unique vertices. They represent '''hexahedra''' that have six quadrilateral faces sharing eight edges. In addition to simply specifying the {X, Y, Z} coordinates of those vertices, MGED provides easier ways to create the following specific types of hexahedra:
 +
** '''3ptarb''' shapes represent '''right quadrilateral prisms''', which are extruded quadrilaterals having parallel ends connected by four rectangular sides.
 +
** '''box''' shapes represent '''parallelepipeds''', whose faces comprise three pairs of equal parallelograms. Unlike a common box, those faces need not be rectangular—if they are, the enclosed volume is a rectangular parallelepiped.
 +
** '''rpp''' shapes represent '''rectangular parallelepipeds''' (also known as '''cuboids''' and '''rectangular prisms'''), whose faces comprise three pairs of equal rectangles. If one pair of faces are squares, the volume is a '''square prism'''. If all of them are squares, the volume is a '''cube''' (geometrically, there cannot be just two pairs of square faces).
 +
 
 +
* '''arb7''' shapes have seven unique vertices. They represent hexahedra that have four quadrilateral and two triangular faces sharing eleven edges. They can only be created by specifying the {X, Y, Z} coordinates of those vertices.
  
== arb7 ==
+
* '''arb6''' shapes have six unique vertices. They represent '''triangular prisms''' and '''truncated tetrahedra''', which are '''pentahedra''' that have two triangular ends connected by three quadrilateral sides sharing nine edges. In addition to simply specifying the {X, Y, Z} coordinates of their vertices, MGED provides an easier way to create one specific type of hexahedron:
Special case of arb8, except with point 8 merged into point 5, making the left face triangular
+
** '''raw''' ('''right angle wedge''') shapes are '''triangular prisms''' whose ends are parallel to each other. Interestingly enough, they don't seem to require any right angles. If the ends are perpendicular to the connecting edges, the shape is a '''right triangular prism''' and has rectangular sides. Presumably two of the rectangular sides of an actual right-angle wedge would also be perpendicular to each other.
;Handled by: make in form(arb8) create
 
== arb6 ==
 
Arbitrary straight-edged shape with 6 vertices, special case of arb8.
 
;Handled by: make in form(arb8) create
 
;Arguments: 6 Vertices in the following order: 1234 vertices for the front face, starting at bottom left, counterclockwise; then back edge is 5 on bottom, 6 on top. Top and bottom faces are triangles.
 
;Example:
 
  
in arb6.s arb6 1 -1 -1  1 1 -1  1 1 1  1 -1 1  -1 0 -1  -1 0 1
+
* '''arb5''' shapes have five unique vertices. They represent '''quadrahedra''', which are pentahedra that have a quadrilateral base and four triangular sides sharing eight edges. If such a volume has a rectangular base it is a '''rectangular pyramid''', one with a square base is a '''square pyramid'''.
  
== arb5 ==
+
* '''arb4''' shapes have four unique vertices. They represent '''tetrahedra''', which have four triangular faces sharing six edges. If all four triangles are equilateral, the shape is a '''regular tetrahedron'''.
special case of arb8.
 
;Handled by: make in form(arb8) create
 
== arb4 ==
 
special case of arb8.
 
;Handled by: make in form(arb8) create
 
== arbn ==
 
Arbitrary solid bounded by N planes
 
;Handled by: make in create
 
;Arguments:
 
;; Number of planes
 
;; xyz direction vector and normal for each plane
 
  
;Example:
+
== ARBN Records ==
in arbn.s arbn 8  1 0 1 1  -1 0 0 1  0 1 0 1  0 -1 0 1  0 0 1 1  0 0 -1 1  0.5 0.5 0.5 1  -0.5 -0.5 -0.5 1
 
  
==box==
+
An '''arbn''' record is specified by N sets of intersecting planes, each defined by four coefficients:
Special case of arb8
+
* the {X, Y, Z} coefficients of the plane's normal vector pointing outward from the center of the arbn shape, and
;Handled by: in form(arb8)
+
* the perpendicular distance of that plane from the origin.
;Arguments:
+
As discussed in the [[Creating and editing arbn primitives]] article, BRL-CAD uses such primitives to represent polyhedra having any number of sides, edges and vertices.
;;V : vertex of first corner
 
;;direction vectors for height, width, and depth
 
==rpp==
 
Special case of arb8
 
;Handled by: make in form(arb8) create
 
;Arguments: xmin xmax ymin ymax zmin zmax
 
  
 
=Ellipsoids=
 
=Ellipsoids=
Line 104: Line 91:
 
Right circular cylinder, special case of tgc
 
Right circular cylinder, special case of tgc
 
;Handled by: in make form(tgc) create
 
;Handled by: in make form(tgc) create
;Arguments: vertex ,  
+
;Arguments: vertex, height vector, radius
 +
Example:
 +
  in rcc1.s rcc 0 0 0  1 1 1  0.5
 +
 
 
== rec ==
 
== rec ==
 
Right elliptical cylinder, special case of tgc
 
Right elliptical cylinder, special case of tgc
Line 122: Line 112:
 
;Arguments: Vertex, vectors Height, A, B
 
;Arguments: Vertex, vectors Height, A, B
 
== trc ==
 
== trc ==
Truncated right circular cone
+
Truncated right circular cone, special case of tgc
 
;Handled by: in make form(tgc) create
 
;Handled by: in make form(tgc) create
 
;Arguments: Vertex, Height vector, radius of base and top
 
;Arguments: Vertex, Height vector, radius of base and top
 +
 +
= derived from 2d=
 +
==extrude==
 +
Extrusion of a 2-d sketch
 +
;Handled by: in make form(?) create
 +
;Arguments: vertex, perpendicular vectors Height A B, sketch, K
 +
 +
==revolve==
 +
Revolution of a 2-d sketch
 +
;Handled by: in
 +
;Arguments: vertex, revolution axis, vector in start plane, angle, sketch
 +
 +
==dsp==
 +
;Handled by: in create
 +
;Arguments: data type (f|o), datasource, count of length and width, interpolation type, cut direction, cell size, unit elevation
 +
 +
See also [[DSP]] tutorial.
 +
 +
==ebm==
 +
extruded bit map
 +
;Handled by: in form create
 +
;Arguments: filename, width and height in cells, extrusion distance,
 +
 +
See also [[EBM]] tutorial.
 +
 +
The extruded bitmap (also referred to as EBM) is a solid based on a greyscale bitmap. The bitmap is an array of unsigned char values, see bw(5), and is extruded by some distance. The EBM solid requires the dimensions of the bitmap file (height and width in bytes), an extrusion length, and a transformation matrix to position the EBM. Each byte in the bitmap file is treated as the base of a cell that is extruded by the specified extrusion length. If the value of the byte is non­zero, then that cell is considered solid.
 +
 +
==hf==
 +
Height field
 +
;Handled by: none?
 +
;Status: depreciated, use dsp instead
 +
  
 
=Other solids=
 
=Other solids=
Line 144: Line 166:
  
 
== nmg ==
 
== nmg ==
n-Manifold geometry solid  (non-manifold geometry?)
+
n-Manifold geometry solid  (non-manifold geometry)
 
;Handled by:  make create
 
;Handled by:  make create
  
Line 192: Line 214:
 
;Arguments: render method, threshold, number of points, location and field strength for each point (and blobbiness/goo factor)
 
;Arguments: render method, threshold, number of points, location and field strength for each point (and blobbiness/goo factor)
  
==extrude==
 
Extrusion of a 2-d sketch
 
;Handled by: in make form(?) create
 
;Arguments: vertex, perpendicular vectors Height A B, sketch
 
  
==dsp==
+
==brep==
;Handled by: in create
+
[[NURBS|see NURBS]]
  
==hf==
+
==spline==
Height field
+
surface splines
;Handled by: none?
+
;Handled by: ?
;Status: depreciated, use dsp instead
 
 
 
==nurb==
 
Non-uniform rational b-spline
 
;Handled by: none?
 
  
 
==vol==
 
==vol==
Line 219: Line 232:
 
;Handled by: in make create (not edit!)
 
;Handled by: in make create (not edit!)
 
;Arguments: number of verticies, number of triangles, mode (1=surface 2=solid 3=plate), triangle orientation mode (1=unoriented 2=counter-clockwise 3=clockwise), each vertex, vertex index of each triangle
 
;Arguments: number of verticies, number of triangles, mode (1=surface 2=solid 3=plate), triangle orientation mode (1=unoriented 2=counter-clockwise 3=clockwise), each vertex, vertex index of each triangle
Note: no provisions in the edit menu to adjust this object!
+
;See also: [[BoT]]
 
 
==ebm==
 
extruded bit map
 
;Handled by: in create
 
;Arguments: filename, width and height in cells, extrusion distance,
 
The extruded bitmap (also referred to as EBM) is a solid based on a greyscale bitmap. The bitmap is an array of unsigned char values, see bw(5), and is extruded by some distance. The EBM solid requires the dimensions of the bitmap file (height and width in bytes), an extrusion length, and a transformation matrix to position the EBM. Each byte in the bitmap file is treated as the base of a cell that is extruded by the specified extrusion length. If the value of the byte is non­zero, then that cell is considered solid.
 
  
==spline==
+
==poly==
surface splines
+
polysolid
;Handeld by: ?
+
; Handled by: none?
 +
; Status: depreciated, use bot instead
  
 
=Other=
 
=Other=
Line 236: Line 244:
 
;Handled by: make form(sketch editor) create
 
;Handled by: make form(sketch editor) create
 
;See also: [[sketch]]
 
;See also: [[sketch]]
 +
 +
==annot==
 +
2D annotation primitive
 +
;Handled by: in command
 +
See: [[annot]]
  
 
==grip ==
 
==grip ==
Grip -- support for joints
+
Grip -- support for joints, non-geometric (does not show in rt)
 
;Handled by: in make form create
 
;Handled by: in make form create
 
Arguments:
 
Arguments:
Line 254: Line 267:
 
;Handled by: in create (not edit!)
 
;Handled by: in create (not edit!)
 
;Arguments: minor type (fdcsiLCSIL), data file, number of values
 
;Arguments: minor type (fdcsiLCSIL), data file, number of values
 +
 +
== submodel ==
 +
Instanced Submodel
 +
:Handled by: in make form create
 +
:Arguments:
 +
;file: File holding the referenced geometry. 0-length if geometry is in the same file.
 +
;treetop: Single name for the geometry to reference.
 +
A submodel is a reference to another geometry, possibly in a separate file.

Latest revision as of 09:09, 3 January 2020


This article provides an overview of various types of geometric primitive objects that can be added to a BRL-CAD geometry file. The shape, size, location and orientation of each such object are defined by a set of parameters/properties that are specific to its type, which are discussed in the corresponding section below.

For general discussions on using MGED to create primitive objects, view their properties, and modify or move them, see:

also see:

Arbitrary convex polyhedra[edit]

An arbitrary convex polyhedron (arb) is a geometric volume that is completely enclosed by a set of 3-dimensional planes. Each has a set of straight-edged, flat faces outlined by the intersections of those planes. The intersection of each pair of planes is a line whose intersections with other planes defines a pair of vertices. The line segment between those two vertices is an edge of the polyhedron that is shared by two faces. Each vertex is common to an equal number (at least three) of faces and edges.

For example, a rectangular parallelepiped is enclosed by three orthogonal pairs of parallel planes. Their intersections define six faces, each with four edges and four vertices. There are a total of 12 edges (each shared by two faces) and 8 vertices (each shared by three faces and three edges).

The BRL-CAD geometry file format defines two types of records for such polyhedra:

  • arb8s are specified by a set of eight vertices.
  • arbns are specified by a set of intersecting planes, each defined by four coefficients.

Although any polyhedron can be defined and stored as an arbn, the arb8 record type is more commonly employed because it is simpler to work with and still accommodates most constructive solid geometry applications.

ARB8 Records[edit]

An arb8 record is specified by a set of eight {X, Y, Z} vertices designated V1 through V8, which need not all be unique. BRL-CAD uses such records to represent polyhedra having four, five or six faces:

  • arb8 shapes have eight unique vertices. They represent hexahedra that have six quadrilateral faces sharing eight edges. In addition to simply specifying the {X, Y, Z} coordinates of those vertices, MGED provides easier ways to create the following specific types of hexahedra:
    • 3ptarb shapes represent right quadrilateral prisms, which are extruded quadrilaterals having parallel ends connected by four rectangular sides.
    • box shapes represent parallelepipeds, whose faces comprise three pairs of equal parallelograms. Unlike a common box, those faces need not be rectangular—if they are, the enclosed volume is a rectangular parallelepiped.
    • rpp shapes represent rectangular parallelepipeds (also known as cuboids and rectangular prisms), whose faces comprise three pairs of equal rectangles. If one pair of faces are squares, the volume is a square prism. If all of them are squares, the volume is a cube (geometrically, there cannot be just two pairs of square faces).
  • arb7 shapes have seven unique vertices. They represent hexahedra that have four quadrilateral and two triangular faces sharing eleven edges. They can only be created by specifying the {X, Y, Z} coordinates of those vertices.
  • arb6 shapes have six unique vertices. They represent triangular prisms and truncated tetrahedra, which are pentahedra that have two triangular ends connected by three quadrilateral sides sharing nine edges. In addition to simply specifying the {X, Y, Z} coordinates of their vertices, MGED provides an easier way to create one specific type of hexahedron:
    • raw (right angle wedge) shapes are triangular prisms whose ends are parallel to each other. Interestingly enough, they don't seem to require any right angles. If the ends are perpendicular to the connecting edges, the shape is a right triangular prism and has rectangular sides. Presumably two of the rectangular sides of an actual right-angle wedge would also be perpendicular to each other.
  • arb5 shapes have five unique vertices. They represent quadrahedra, which are pentahedra that have a quadrilateral base and four triangular sides sharing eight edges. If such a volume has a rectangular base it is a rectangular pyramid, one with a square base is a square pyramid.
  • arb4 shapes have four unique vertices. They represent tetrahedra, which have four triangular faces sharing six edges. If all four triangles are equilateral, the shape is a regular tetrahedron.

ARBN Records[edit]

An arbn record is specified by N sets of intersecting planes, each defined by four coefficients:

  • the {X, Y, Z} coefficients of the plane's normal vector pointing outward from the center of the arbn shape, and
  • the perpendicular distance of that plane from the origin.

As discussed in the Creating and editing arbn primitives article, BRL-CAD uses such primitives to represent polyhedra having any number of sides, edges and vertices.

Ellipsoids[edit]

ell[edit]

Ellipsoid

Handled by
make in form create
Arguments
vertex point, at the center
vectors A B C describing the radii of the ellipses; A points front, B points right, C points up.

Example:

in ell.s ell 0 0 0  0 -1 0  1 0 0  0 0 1

sph[edit]

Sphere, special case of the ellipsoid, with vectors A B and C all the same magnitude (radius).

Handled by
make in form(ell) create

Arguments:

vertex point, at the center
radius

ellg[edit]

Special case of ellipsoid

Handled by
in form(ell)
Arguments
two foci points, and axis length

ell1[edit]

Special case of ellipsoid

Handled by
in make form(ell) create
Arguments
vertex, vector A, radius of revolution

ehy[edit]

Elliptical hyperboloid

Handled by
make in form create
Arguments
vertex, perpendicular vectors Height and (A,r_1) major axis, (r_2) magnitude of vector B, (c) apex to asymptotes distance

epa[edit]

Elliptical paraboloid

Handled by
in make form create

Cones and Cylinders[edit]

tgc[edit]

Truncated general cone

Handled by
in make form create
Arguments
vertex, vectors H A B, magnitudes of vectors C D

rcc[edit]

Right circular cylinder, special case of tgc

Handled by
in make form(tgc) create
Arguments
vertex, height vector, radius

Example:

 in rcc1.s rcc 0 0 0  1 1 1  0.5

rec[edit]

Right elliptical cylinder, special case of tgc

Handled by
in make form(tgc) create
Arguments
vertex, height vector, radius

rhc[edit]

Right hyperbolic cylinder

Handled by
in make form create
Arguments
vertex, perpendicular vectors for Height and B, (r) rectangular half width, (c) apex to asymptote distance,

rpc[edit]

Right parabolic cylinder

Handled by
in make form create
Arguments
vertex, perpendicular vectors for Height and B, (r) rectangular half width

tec[edit]

Truncated elliptical cone, special case of tgc

Handled by
in make form(tgc) create
Arguments
Vertex, vectors Height, A, B

trc[edit]

Truncated right circular cone, special case of tgc

Handled by
in make form(tgc) create
Arguments
Vertex, Height vector, radius of base and top

derived from 2d[edit]

extrude[edit]

Extrusion of a 2-d sketch

Handled by
in make form(?) create
Arguments
vertex, perpendicular vectors Height A B, sketch, K

revolve[edit]

Revolution of a 2-d sketch

Handled by
in
Arguments
vertex, revolution axis, vector in start plane, angle, sketch

dsp[edit]

Handled by
in create
Arguments
data type (f|o), datasource, count of length and width, interpolation type, cut direction, cell size, unit elevation

See also DSP tutorial.

ebm[edit]

extruded bit map

Handled by
in form create
Arguments
filename, width and height in cells, extrusion distance,

See also EBM tutorial.

The extruded bitmap (also referred to as EBM) is a solid based on a greyscale bitmap. The bitmap is an array of unsigned char values, see bw(5), and is extruded by some distance. The EBM solid requires the dimensions of the bitmap file (height and width in bytes), an extrusion length, and a transformation matrix to position the EBM. Each byte in the bitmap file is treated as the base of a cell that is extruded by the specified extrusion length. If the value of the byte is non­zero, then that cell is considered solid.

hf[edit]

Height field

Handled by
none?
Status
depreciated, use dsp instead


Other solids[edit]

tor[edit]

Torus

Handled by
in make form create
Arguments
vertex, normal vector, radius of revolution, tube radius

eto[edit]

Elliptical torus

Handled by
in make form create
Arguments
vertex, normal vector, radius of revolution, vector C, (r_d) magnitude of semi-minor axis

part[edit]

Conical particle

Handled by
in make create
Arguments
vertex, height vector, radius at v, radius at h

The particle solid is a lozenge-shaped object defined by a vertex, a height vector and radii at both ends. The body of the particle is either a cylinder or a truncated cone, depending on the values of the radii. Each end of the particle is a hemisphere of the specified radius.

nmg[edit]

n-Manifold geometry solid (non-manifold geometry)

Handled by
make create

pipe[edit]

Hollow and solid pipes and wires

Handled by
in make create
Arguments
# points, for each point: location, inner and outer diameters, bend radius

ars[edit]

Arbitrary rectangular solid

Handled by
in make create

Solids of type 'ars' (Arbitrary Faceted Solids) are defined using "waterlines". The following figure consists of a start point, some number of intermediate polygons, and an ending point. Each of the intermediate polygons have the same number of vertices and the vertices are numbered 1 thru N. In addition to the intermediate polygons a line will be created that begins at the start point, goes through each polygon at its vertex numbered 1, and terminates at the end point. This is repeated for each polygon vertex 2 thru N. The start point, polygons, and end point are each a "waterline".

<need an image here to illustrate the concept>

the ars shape takes the following values as input:

  • The number of points per waterline (the number of vertices on each intermediate polygon)
  • The number of waterlines (the number of intermediate polygons plus 2)
  • X, Y, and Z for a starting point (the first waterline)
  • for each interior polygon (an intermediate waterline)
    • for each point on the polygon
      • X, Y, and Z for the point on the polygon
  • X, Y, and Z for an ending point (the last waterline)

For example, the command:

in x.1 ars 4 6 0 0 3 1 1 3 1 -1 3 -1 -1 3 -1 1 3 1 1 1 1 -1 1 -1 -1 1 -1 1 1 1 0 -1 0 -1 -1 -1 0 -1 0 1 -1 1 0 -3 0 -1 -3 -1 0 -3 0 1 -3 0 0 -3

Will produce a square bar with a tapered 1/8 turn twist in the middle. Of course, more waterlines in the twist and more points per waterline would make the twist smoother.

Example ARS



The parameters to the above ars command can be dissected as:

4 : number of points per waterline (i.e. intermediate polygons have 4 vertices)
6 : number of waterlines (four intermediate polygons plus the two endpoints)
0 0 3 - the center of the top end of the bar
1 1 3 1 -1 3 -1 -1 3 -1 1 3 : a 2x2 square in the xy plane at z offset 3
1 1 1 1 -1 1 -1 -1 1 -1 1 1 : a 2x2 square oriented the same as the first but at z offset 1
1 0 -1 0 -1 -1 -1 0 -1 0 1 -1 : a 2x2 square at a 45 degree rotation from the first squares at z offset -1
1 0 -3 0 -1 -3 -1 0 -3 0 1 -3 : a 2x2 square at a 45 degree rotation from the first squares at z offset -3
0 0 -3 : the center of the bottom end of the bar

metaball[edit]

Handled by
in make form(*) create
Arguments
render method, threshold, number of points, location and field strength for each point (and blobbiness/goo factor)


brep[edit]

see NURBS

spline[edit]

surface splines

Handled by
 ?

vol[edit]

volume / voxel

Handled by
in
Arguments
filename, xyz dimensions of file (in voxels), lower and upper threasholds, xyz dimensions of a cell

The vol solid is defined by a 3-dimensional array of unsigned char values. The solid requires a file of these values, the extent of the file (in bytes) in each dimension, the size of each cell, and high and low thresholds. Any value in the file that is between the thresholds (inclusive) represents a solid cell.

bot[edit]

Bag of triangles

Handled by
in make create (not edit!)
Arguments
number of verticies, number of triangles, mode (1=surface 2=solid 3=plate), triangle orientation mode (1=unoriented 2=counter-clockwise 3=clockwise), each vertex, vertex index of each triangle
See also
BoT

poly[edit]

polysolid

Handled by
none?
Status
depreciated, use bot instead

Other[edit]

Sketch[edit]

2d outline

Handled by
make form(sketch editor) create
See also
sketch

annot[edit]

2D annotation primitive

Handled by
in command

See: annot

grip[edit]

Grip -- support for joints, non-geometric (does not show in rt)

Handled by
in make form create

Arguments:

Center
normal vector
magnitude

half[edit]

halfspace

Handled by
in make form create
Arguments
Normal, distance from origin

A half space is the portion of space on one side of a plane. It is represented by its boundary (the plane) and its outward-pointing normal vector.

binunif[edit]

Uniform-array binary object

Handled by
in create (not edit!)
Arguments
minor type (fdcsiLCSIL), data file, number of values

submodel[edit]

Instanced Submodel

Handled by: in make form create
Arguments:
file
File holding the referenced geometry. 0-length if geometry is in the same file.
treetop
Single name for the geometry to reference.

A submodel is a reference to another geometry, possibly in a separate file.