
BRL-CAD Tutorial Series:
Volume II – Introduction to MGED

by Lee A. Butler, Eric W. Edwards, Betty J. Schueler,
Robert G. Parker, and John R. Anderson

ARL-SR-102 April 2001

Approved for public release; distribution is unlimited

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer’s or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to
the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-SR-102 April 2001

BRL-CAD Tutorial Series:
Volume II – Introduction to MGED

Lee A. Butler
Survivability/Lethality Analysis Directorate, ARL

Eric W. Edwards
SURVICE Engineering Company

Betty J. Schueler
Quantum Research International

Robert G. Parker
Survivability/Lethality Analysis Directorate, ARL

John R. Anderson
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

Since 1979, the U.S. Army Research Laboratory has been developing and distributing the
BRL-CAD constructive solid geometry (CSG) modeling package for a wide range of
military and industrial applications. The package includes a large collection of tools and
utilities including an interactive geometry editor, ray-tracing and generic framebuffer
libraries, a network-distributed image-processing and signal-processing capability, and an
embedded scripting language.

As part of this effort, a multivolume tutorial series is being developed to assist users in
the many features of the BRL-CAD package. The “Introduction to MGED,” which is the
second volume in the series, is intended to provide new users with a basic understanding
of the Multi-Device Geometry Editor (MGED), which is the heart of BRL-CAD. Other
volumes focus on installation procedures, advanced features, and programming.

iii

Preface

Since 1979, the U.S. Army Research Laboratory (formerly the Ballistic Research
Laboratory) has been developing the BRL-CAD constructive solid geometry (CSG)
modeling package for a wide range of military and industrial applications. The strength
of the package lies in its ability to build realistic models of complex objects from a
relatively small set of “primitive shapes” by employing the basic Boolean operations of
union, subtraction, and intersection and by assigning real-world material attributes.

The package comprises a large collection of tools, utilities, and libraries including an
interactive geometry editor, ray-tracing and generic framebuffer libraries, a network-
distributed image-processing and signal-processing capability, and an embedded scripting
language.

Although BRL-CAD has continued to mature in performance and utility, developers have
strived to keep the package approachable and easy to use, as evidenced by the package’s
dual command formats, its newly renovated graphical user interface (GUI), and its
customization potential through user scripting.

In addition, a multivolume tutorial series is being developed to assist users in a variety of
BRL-CAD areas and applications. The “Introduction to MGED,” which is the second
volume in the series, is intended to provide new users with a basic understanding of the
Multi-Device Geometry Editor (MGED), which is the heart of the BRL-CAD package.
Other volumes focus on installation procedures, advanced features, and programming.

iv

Intentionally Left Blank

v

Acknowledgments

The authors would like to thank Paul Tanenbaum, TraNese Christy, Sean Morrison, and
the other members of the Advanced Computer Systems Team who reviewed this
document in a timely manner and made many helpful suggestions to improve its accuracy
and presentation.

In addition, the authors would like to acknowledge team member Mike Muuss, who
passed away while this volume was in preparation. Mike was the original architect of the
BRL-CAD package and guided its development for 20 years until his death on
20 November 2000. He embodied a unique blend of unparalleled intellect, unquenchable
curiosity, and unending energy to advance the capabilities of everything and everyone he
touched. A natural-born troubleshooter, Mike approached every job, big or small, with a
passion for excellence and a child-like enthusiasm, which helped drive BRL-CAD far
beyond expectations.

Although he never got a chance to review this document, much of this work is a result of
his vision and attention to detail. Therefore, the BRL-CAD Tutorial Series is dedicated
to his memory. His sharp mind, his warm spirit, and his loyal friendship will be greatly
missed.

vi

Intentionally Left Blank

vii

Table of Contents
Page

Preface... iii

Acknowledgments ... v

Lesson 1: Creating Primitive Shapes ... 1

Lesson 2: Learning the Viewing Options... 11

Lesson 3: Using the Insert Command to Size and Place Shapes 23

Lesson 4: Assigning Material Properties and Raytracing.. 31

Lesson 5: Learning About Boolean Expressions... 37

Lesson 6: Creating a Goblet.. 47

Lesson 7: Assigning Material Properties to Your Goblet .. 55

Lesson 8: Assigning More Material Properties to Your Goblet 61

Lesson 9: Creating a Globe in a Display Box .. 69

Lesson 10: Creating a Mug ... 77

Lesson 11: Refining the Mug .. 83

Lesson 12: Creating the Mug Through the GUI ... 87

Lesson 13: Placing Shapes in 3-D Space .. 93

Lesson 14: Gaining More Practice Placing Shapes in Space 103

Lesson 15: Creating a Toy Truck... 113

Lesson 16: Learning Modeling Techniques and Structures 129

Appendix A: MGED Commands.. 147

Appendix B: Emacs and Vi Commands... 253

Appendix C: Primitive Shapes.. 257

Index... 267

viii

Intentionally Left Blank

ix

Supplementary Tutorial Boxes

Note that throughout this document, tutorial boxes have been used to supplement the
information presented in the text. Each box is labeled with one of the following icons
for ease of recognition:

Point of
Caution

Further
Information

Key
Point

Alternative
Idea/Method

x

Intentionally Left Blank

Lesson 1 Creating Primitive Shapes

1

Lesson 1: Creating Primitive Shapes

In this lesson, you will:

� Launch the MGED program.
� Enter commands at the MGED prompt in the Command Window.
� Use the MGED Graphical User Interface (GUI).
� Open or create a new database when launching MGED.
� Use the GUI to open or create a new database.
� Title a database.
� Select a unit of length for your design.
� Select a primitive shape.
� Create a primitive shape using the make command.
� Use the Z command to clear the Graphics Window.
� Draw a previously created shape using the draw command.
� Use the erase command to delete an item in the Graphics Window display.
� Create a sphere using the GUI menu.
� Use the l command to list a shape’s attributes or parameters.
� Use the ls command to list the contents of the database.
� Eliminate a shape or object from the database using the kill command.
� Edit a command.
� Use the q or exit commands to quit the program.

1. Launching the MGED Program

To launch the MGED program, type mged at the Terminal (tty) prompt and then press
the ENTER key. This brings up two main windows: the MGED Command Window and
the MGED Graphics Window (sometimes called the Geometry Window). Both windows
will initially be blank, awaiting input from you. To leave the program at any time, at the
Command Line type either the letter q or the word quit and then press the ENTER key.

2. Entering Commands in the Command Window

You can type in commands at the mged> prompt. Many experienced UNIX users prefer
this method because it allows them to quickly create a model (which we sometimes refer
to as a “design”) without having to point and click on a lot of options. The complete
listing of editing commands and what they do can be found in Appendix A.

Lesson 1 Creating Primitive Shapes

2

Check all typed entries before you press the ENTER key. If you find you
made a mistake, simply press the BACKSPACE key until you have erased
over the mistake and then re-type the information. Later you will get more
experience editing text using vi and emacs command emulation.

3. Using the GUI

Users who are more familiar with Microsoft Windows may prefer to use the GUI pull-
down menus at the top of the Command or Graphics Window (they are the same in either
window). The menus are divided into logical groupings to help you navigate through the
MGED program.

Before you can create a model, you need to open a new database either through the
Terminal Window when starting MGED or through the GUI after starting MGED.

4. Opening or Creating a New Database when Launching MGED

When launching MGED, you can open or create a database at the same time. At the shell
prompt (usually a $ or %), in the Terminal Window, type mged followed by a new or
existing database name with a .g extension. For example:

mged sphere.g<ENTER>

Terminal Window

If you are creating a new database, a small dialog box asking if you want to create a new
database named sphere.g will appear. Click on Yes, and a new database will be created.

Lesson 1 Creating Primitive Shapes

3

If sphere.g already exists, MGED will open the sphere.g database as the program is
launched.

5. Using the GUI to Open or Create a Database

Alternatively, once you have launched MGED, you can open an existing database or
create a new database using the GUI menus (at the top of the Command or Graphics
Window) by clicking on File and then either Open or New. Both options bring up a
small dialog box. The Open dialog box will ask you to type in the name of an existing
database. The New dialog box will ask you to type in the name of a new database. Click
on OK to accept the database.

For this lesson, create a new database called sphere.g. To do this, type sphere.g at the
end of the path name, as shown in the following illustration. Click on OK to accept the
database name.

MGED Command Window with Database Dialog Box

Lesson 1 Creating Primitive Shapes

4

MGED Graphics Window

One advantage to using the GUI, if you aren’t familiar with UNIX file management, is
that this will show you your current path name, so you will know exactly where your
database is going to be located. This can be especially helpful if you have a lot of
directories or files to manage.

6. Assigning a Title to Your Database

You can title your new database to provide an audit trail for you or others who might use
your database. After the prompt, in the Command Window, type title followed by a
space and a name that reflects the database you are going to make. When you are done,
press the ENTER key. For example:

mged> title MySphere<ENTER>

Note that in BRL-CAD versions prior to release 6.0, the title is limited to 72 characters.

7. Selecting a Unit of Length

MGED uses millimeters for all internal mathematical processes; however, you can create
your design using some other unit, such as feet. For this lesson, inches is used. To select
inches, move your mouse pointer to the File menu at the top of the Command Window.
Click on File and then Preferences. A new menu will appear. Select Units and then
Inches. If you are not a “point-and-click” type of person and prefer a Command Line,

Lesson 1 Creating Primitive Shapes

5

then just type units in after the MGED prompt in the Command Window, followed by
the ENTER key. The Command Line looks like:

mged> units in<ENTER>

8. Selecting a Primitive Shape

MGED provides a variety of primitive shapes (sometimes referred to as simply shapes or
primitives) that you can use to build models. Each type of shape has parameters that
define its position, orientation, and size. A listing of these shapes and their respective
parameters is given in Appendix C.

Historically, the word solid was used for what we now refer to as a
primitive shape. This older terminology was sometimes difficult for new
users to understand. If you see the word solid used in any BRL-CAD
programs, documentation, or commands (e.g., in Appendix A), think
primitive shape.

9. Creating a Sphere from the Command Line

For this lesson, you are going to create a single sphere. There are two ways you can
create a primitive shape. You can create all shapes through the Command Window and
most shapes through the GUI.

You can easily create a sphere from the prompt in the Command Window by typing just a
few commands. At the MGED prompt, type:

make sph1.s sph<ENTER> [Note: Use the digit 1, not the letter l]

This command tells the MGED program to:

make sph1.s sph
Make a primitive shape Name it sph1.s Make the shape a sphere

A default sphere will be created, and a wireframe representation of the primitive shape
will appear in the Graphics Window. In Lesson 4, you will give your sphere a solid,
three-dimensional look.

This command will draw the primitive shape in the Graphics Window.

Lesson 1 Creating Primitive Shapes

6

10. Clearing the Graphics Window

To build another object or work on another primitive shape, you can easily clear the
Graphics Window through the Command Window. At the Command Line prompt, type
an uppercase Z (for zap) followed by ENTER.

Note: Before using the zap option, make sure you “activate” (i.e., set the
focus on) the Command Window. If you type a z and your cursor is still in
the Graphics Window, you will send your design spinning. Typing a zero
(0) will stop the spin.

11. Drawing a Previously Created Object

To recall the sphere, type the command on the Command Line as follows:

draw sph1.s<ENTER>

This command tells the MGED program to:

draw sph1.s
Draw a previously created primitive shape named sph1.s

12. Erasing an Item from the Graphics Window

You may occasionally want to erase a particular item from the display in the Graphics
Window. You can use the erase command to remove the item without any file operation
being performed; the item remains in the database. To delete the sph1.s object from the
display, at the Command Window prompt, type:

erase sph1.s<ENTER>

13. Creating a Sphere Using the GUI

Another way to create a sphere is to use the GUI menu system duplicated at the top of the
Command and Graphics windows. Clear your Graphics Window by using the previously
described Z command. Then, in the Graphics Window, click on Create, and a drop-
down menu will appear with the various primitive shape types available. Select sph (for
sphere) under the Ellipsoids category. This will bring up a dialog box. Click in the
empty text box and type sph2.s. Click on Apply or press ENTER. A new sphere will be
created and drawn in the Graphics Window. When you create a shape through the GUI,
the shape will automatically be in edit mode so that you can change it as needed, and the
shape’s parameters—which define its position, orientation, and size—will be in view.

Lesson 1 Creating Primitive Shapes

7

14. Viewing a Shape’s Parameters

Sometimes when you are making a model, you might want to view a shape’s parameters,
such as height, width, or radius, in the Command Window. You can easily list the
attributes of a shape by typing the l (for “list”) command at the Command Window
prompt as follows:

 l shape_name<ENTER> [Note: The command is the lowercase letter l]

Note: If you attempt to type in the Command Window and you see no
words appearing there, chances are the focus has not been set on that
window (i.e., keyboard input is still directed to another window).
Depending on your system’s configurations, the focus is set to a window
either by moving the cursor into the window or clicking on the window.

An example of the dialog that might occur in the Command Window for the parameters
or attributes of the first sphere you created is as follows:

mged> l sph1.s
sph1.s: ellipsoid (ELL)

V (1, 1, 1)
A (1, 0, 0) mag=1
B (0, 1, 0) mag=1
C (0, 0, 1) mag=1
A direction cosines=(0, 90, 90)
A rotation angle=0, fallback angle=0
B direction cosines=(90, 0, 90)
B rotation angle=90 fallback angle=0
C direction cosines=(90, 90, 0)
C rotation angle=0, fallback angle=90

Don’t be concerned if you notice in the preceding output that MGED stores your sphere
as an ellipsoid. In actuality, the sphere is just a special case of the ellipsoid (see
Appendix C). Also, note that it is not important if the numbers in your output do not
match what is shown in this example.

Use the l command to list both sph1.s and sph2.s before continuing with this lesson.

Lesson 1 Creating Primitive Shapes

8

15. Listing the Contents of a Database

In addition to viewing a shape’s contents, you might also want to list the contents of the
database to see what items have been created. To view the database contents, type at the
Command Window prompt:

ls<ENTER>

16. Killing a Shape or Object

Sometimes when creating a model, you may need to eliminate a shape or object from the
database. The kill command is used to do this. For example, if you wanted to kill the
sph1.s shape, you would type at the Command Window prompt:

kill sph1.s<ENTER>

Make another sphere through either the Command Window or the GUI and name it
sph3.s. Once the sphere is made, use the kill command to eliminate it from the database
by typing at the Command Window prompt:

kill sph3.s<ENTER>

You can tell the shape has been eliminated by using the ls command in the Command
Window to list the contents of the database. At the Command Window prompt, type:

ls<ENTER>

You should see two shapes listed: sph1.s and sph2.s.

Note: All changes are immediately applied to the database, so there is no
“save” or “save as” command. Likewise, there is presently no “undo”
command to bring back what you have deleted, so be sure you really want
to permanently delete data before using the kill command.

17. Editing Commands in the Command Window

Occasionally, when you enter commands in the Command Window, you will make a
mistake in typing. MGED can emulate either the emacs or vi syntax for Command Line
editing. By default, the emacs syntax is used. See Appendix B for a list of keystrokes,
effects, and ways to select between the two command sets.

You can also use the arrow keys to edit commands. The left and right arrow keys move
the cursor in the current Command Line. Typing ENTER at any location on the

Lesson 1 Creating Primitive Shapes

9

Command Line executes the command. Note that both the BACKSPACE and DELETE
keys will delete one character to the left of the cursor.

MGED keeps a history of commands that have been entered. The up and down arrow
keys allow you to select a previously executed command for editing and re-execution.

18. Quitting MGED

Remember, to leave the program at any time, type from the Command Line either the
letter q or the word quit and then press the ENTER key. You may also quit the program
by selecting Exit from the File menu.

Review

In this lesson, you:

� Started the MGED program.
� Entered commands in the Command Window.
� Used the MGED GUI.
� Created or opened a database using MGED naming conventions.
� Used the GUI to create or open a database.
� Titled a database.
� Selected a unit of measure for a design.
� Selected a primitive shape.
� Created a primitive shape using the make command in the Command Window.
� Cleared the screen of a design using the Z command.
� Drew a previously created shape using the draw command.
� Used the erase command to delete a shape from the Graphics Window display.
� Used the GUI to create a primitive shape.
� Used the l command to view a shape’s parameters.
� Used the ls command to list the contents of the database.
� Used the kill command to eliminate a shape from the database.
� Edited commands in the Command Window.
� Used the q or Exit commands to quit the program.

Lesson 1 Creating Primitive Shapes

10

Intentionally Left Blank

Lesson 2 Learning the Viewing Options

11

Lesson 2: Learning the Viewing Options

In this lesson, you will:

� Create a model radio.
� Locate viewing information in the Command Window.
� Identify elements of the MGED viewing system.
� View your radio from different angles.
� Work with Shift Grips.

Models in BRL-CAD are constructed in a single xyz coordinate system, which we
sometimes refer to as model space. The Graphics Window of MGED displays a portion
of this space. The xyz coordinate system is used for specifying both the geometry and the
view of the geometry that is presented in the Graphics Window.

MGED offers a default view and a variety of optional views. You can switch back and
forth between these views during and after model creation. This lesson is designed to
help you understand the viewing process and options.

1. Creating a Radio

To gain practice viewing actual geometry, let’s build a simple geometric object—a
“walkie-talkie” radio. Note that the commands we use to do this are not discussed here
because our current concern is on applying the principles of viewing. Later lessons on
creating geometry address these commands in detail. Begin by launching MGED and
creating a new database named radio.g. Remember that one way to do this is to type the
following command in a Terminal Window:

$ mged radio.g

Type the following in the Command Window, carefully checking each line before
pressing ENTER. If you make a mistake, use BACKSPACE or the left/ right arrow
keys to make corrections before pressing ENTER (see Appendix B for the editing
command list).

Be especially careful to note the difference between the numeral one [1]
and the letter l [l] in ell1 on the third line.

Lesson 2 Learning the Viewing Options

12

in body.s rpp 0 16 0 32 0 48<ENTER>
in btn.s rec 8 30 36 0 3 0 4 0 0 0 0 2<ENTER>
in btn2.s ell1 8 33 36 4 0 0 2<ENTER>
in spkr.s tor 16 16 16 1 0 0 12 1<ENTER>
in ant.s rcc 2 2 46 0 0 48 1<ENTER>
in knob.s rcc 4 4 40 8 0 0 5<ENTER>

Note that in the preceding Command Line expressions, btn is an
abbreviation for button, ant is an abbreviation for antenna, and spkr is an
abbreviation for speaker. Also note that the numbers could have been
separated by single spaces. The extra spaces were inserted simply to
improve readability. For some usages (e.g., the r and comb commands,
which are discussed later), the number of spaces has to be exact.

An image similar to the following should now appear in the Graphics Window.

Default View of a Radio

2. Locating Viewing Information in the Command Window

Now take a minute to look at the Command Window. Even if nothing is in the window,
enclosed in the bottom border is a string of information about the Graphics Window. An
example string might read:

cent=(8.000 16.000 24.000) sz=96.000 mm az=35.00 el=25.00
tw=-0.00 ang=(0.00 0.00 0.00)

Lesson 2 Learning the Viewing Options

13

As detailed in the following table, this information contains four groups of viewing data
about the Graphics Window.

Viewing Data at the Bottom of the Command Window

Screen
Designation

Viewing
Information

Location of
Variables

Default
Units

Default
Values

cent= Center of
View

First 3
numbers

Millimeters 0.000 0.000 0.000

sz= Size of
View

4th

number
Millimeters Dependent upon

size selected
az=
el=

Viewing
Angle

5th and 6th

numbers
Degrees 35.00

25.00
tw=
ang=

Twist and
Angle of View

7th–10th

numbers
Degrees 0.00

0.00 0.00 0.00

3. Identifying Elements of the MGED Viewing System

Center of View

The first set of information tells you the center of what you are viewing. You can change
the center of where you are looking through both the GUI and the Command Window.

To change the center of your view of the radio using the GUI, press the SHIFT key and
any mouse button while dragging the mouse. (This is an example of a Shift Grip, which
is described later in this chapter.) You can also change the center of view by placing the
mouse pointer where you want the center to be and clicking the middle mouse button.

To change the center of view using the Command Window, simply type at the prompt the
word center followed by three values for x, y, and z (which is the 3-D coordinate system
mentioned previously). For example:

center 0 15 325.735<ENTER>

As you change your view of the geometry, notice that the numbers in the brackets after
the cent= title will change to reflect the new center of the view.

Size of View

The size of the view is the amount of model space that is shown in the Graphics Window.
For example, consider using a camera with a zoom lens to photograph a rose. As shown
in the following figures, if you zoom in on the rose, it will appear large in relation to
your viewing field. If you zoom out, it will appear smaller. In actuality, the view size
for the rose image on the left might represent only 15 mm across while the view size for

Lesson 2 Learning the Viewing Options

14

the image on the right might represent 100 mm across. In both cases, however, the actual
size of the rose is the same.

Zoom In to View Details
(small size of view)

Zoom Out to View Object
in Relation to Environment

(large size of view)

To change the view size of your radio through the GUI, click the right mouse button to
zoom in and the left mouse button to zoom out. Each time you click the left or right
mouse button, the view of the design will increase or decrease in size by a factor of 2
(i.e., two times larger or two times smaller than the previous size).

You can also zoom in or out on your design by going to the View menu and selecting
Zoom In or Zoom Out. A drawback to this method is that you can only zoom in or out
one time because the drop-down menu closes once you make a selection.

If you get lost at any point while creating a model, you can use the zap (Z) command to
clear the geometry from the Graphics Window and then recall the shape with the draw
command. When drawing in an empty Graphics Window, MGED automatically sizes the
view to fit what you draw into the window.

You can control the view size of your radio more accurately with the Command Window.
To set the size to 100 (of whichever units you have selected), type at the prompt:

size 100<ENTER>

You can also zoom in or out on a design by typing zoom on the Command Line. To
make your radio appear 50% smaller, you would type:

zoom 0.5<ENTER>

To make your radio appear twice as large, you would type:

Lesson 2 Learning the Viewing Options

15

zoom 2<ENTER>

Remember that changing the view size does NOT affect the size of the
object. You will change the size of an object in Lesson 6.

Angle of View

Azimuth, elevation, and twist (all measured in degrees) determine where you are in
relation to the object you are viewing. Azimuth determines where you are around the
sides of it (i.e., to the front, left, right, behind, or somewhere in between), elevation
determines where you are above or below it, and twist determines the angle you are
rotated about the viewing direction.

To better understand azimuth, imagine walking around a truck with a camera to
photograph it. As shown in the following illustrations, you would be at 0˚ azimuth if you
stood directly in front of the truck to take its picture. If you circled around slightly to
your right, you would be at 35˚ azimuth. If you moved further around until you were
looking directly at the driver’s side (in U.S. trucks), you would be at 90˚ azimuth.
Standing behind it would put you at 180˚ azimuth. If you were facing the passenger’s
side, you would be at 270˚ azimuth.

The terms azimuth, elevation, and twist are similar to the terms yaw, pitch,
and roll, respectively, which are common terms in the aerospace industry.

Lesson 2 Learning the Viewing Options

16

Front (az=0, el=0) az=35, el=0

Left (az=90, el=0) Rear (az=180, el=0)

Right (az=270, el=0)

Elevation, on the other hand, involves the viewer’s position above or below an object. In
the preceding example, you circled around a truck without changing your relative height.
You had an elevation of 0˚, which means you were level with it. As the following figures
illustrate, however, imagine stopping at the 35˚ azimuth position and then climbing a
ladder to photograph the truck from 25˚ elevation. Climbing higher, you would be at 60˚
elevation. If you were directly above it with the camera facing down, you would be at
90˚ elevation. If you crawled under the truck and looked directly up at it, you would be at
–90˚ elevation.

Lesson 2 Learning the Viewing Options

17

az=35, el=0 az=35, el=25

az=35, el=60 az=35, el=90

Top (az=270, el=90) Bottom (az=270, el=-90)

Lesson 2 Learning the Viewing Options

18

Finally, twist (which is an optional setting in MGED) specifies a rotation about the
viewing direction. This rotation is applied to the view after azimuth and elevation have
been designated. So, returning to our truck example, imagine standing in front of the
vehicle (az=0, el=0) and then tilting your camera counterclockwise 14˚. This would give
your view a 14˚ twist angle, as shown in the following figure (on the left). Note again
that it is not the truck that is tipped up, but simply your view of it. For more information
on specifying twist, see the ae command in Appendix A.

Front (az=0, el=0, tw=14)

4. Summing up on Azimuth and Elevation and the xyz Coordinate System

As mentioned at the start of this lesson, MGED operates in a three-dimensional
coordinate system (determined by the x, y, and z axes). Azimuth is measured in the xy
plane with the positive x direction corresponding to an azimuth of 0˚. Positive azimuth
angles are measured from the positive x axis toward and past the positive y axis.
Negative azimuth angles are measured in the other direction.

Azimuth, Elevation, and the xyz Coordinate System

Lesson 2 Learning the Viewing Options

19

If the azimuth angle is 0, then elevation is measured in the xz plane with +90˚
corresponding to the positive z direction and –90˚ corresponding to the negative z
direction. However, if azimuth is not 0, these angles are in a plane aligned with the
azimuth direction.

5. Viewing Your Radio from Different Angles

Let’s now experiment with different views of your radio. MGED has several standard
default views, which you’ve already seen in the preceding truck example. They include
Top (az270, el90); Bottom (az270, el-90); Right (az270, el0); Left (az90, el0); Front
(az0, el0); Rear (az180, el0); az35, el25; and az45, el45.

Go to the View menu and try viewing your radio from different angles.

Top az35,el25

Right Front

Lesson 2 Learning the Viewing Options

20

You can also select any azimuth-elevation combination from the Command Line. For
example, at the prompt type

ae 128 17<ENTER>

As with many of the Command Line options, this method of selecting views provides a
finer degree of control/precision when you need it.

MGED can also display multiple views simultaneously. Go to the Modes menu and click
on Multipane. Four small panes with different views should appear in your Graphics
Window, as shown in the following illustration.

Multipane View of the Radio

6. Working with Shift Grips

The Shift Grip options of MGED are handy hot-key and mouse button combinations that
can be used in two different ways. With regard to our present discussion on viewing, the
Shift Grips can, in effect, “drag” the world around in front of the viewer (but without
actually changing the coordinates of the viewed objects). The same Shift Grips can also
be used in Edit mode to actually move or alter the geometry of your objects. In both
cases, the Shift Grips appear to do the same thing, so it is important always to know the
mode in which you are operating.

In general, the SHIFT key translates (moves), the CTRL key rotates, and the ALT key
constrains (or limits) translation or rotation to a particular axis (x, y, or z). These axes

Lesson 2 Learning the Viewing Options

21

correspond to the three mouse buttons as follows: the left button represents the x axis, the
middle button represents the y axis, and the right button represents the z axis. In addition,
the SHIFT and CTRL keys can be used in conjunction with any mouse button to scale
an object (although the ALT key will not constrain this action). The following table lists
all of the key bindings and their functions.

Shift Grip Keys and Effects

Function Key
Combination

Effect in
Normal Viewing

Effect in
Edit Mode

Translate
(Move)

SHIFT + any mouse button +
mouse drag

Moves view in
any direction

Translates object in
any direction

Rotate CTRL + any mouse button +
mouse drag

Rotates view in
any direction

Rotates object in any
direction

SHIFT + ALT +
left mouse button + mouse drag

Moves view in the
x direction

Translates object in
the x direction

SHIFT + ALT +
middle mouse button + mouse drag

Moves view in the
y direction

Translates object in
the y direction

Constrain
Translation

SHIFT + ALT +
right mouse button + mouse drag

Moves view in the
z direction

Translates object in
the z direction

CTRL + ALT +
left mouse button + mouse drag

Rotates view
about the x axis

Rotates object about
the x axis

CTRL + ALT +
middle mouse button + mouse drag

Rotates view
about the y axis

Rotates object only
about the y axis

Constrain
Rotation

CTRL + ALT +
right mouse button + mouse drag

Rotates view
about the z axis

Rotates object about
the z axis

Scale SHIFT + CTRL + any mouse
button + mouse drag

Scales view larger
or smaller

Scales object larger
or smaller

Depending on your window manager or desktop environment settings,
some key combinations may already be designated to perform other tasks
(e.g., resizing or moving a window). If so, you may need to adjust settings
to allow the Shift Grip options to function. Furthermore, left-handed users
may have switched the behavior of the left and right mouse buttons in their
system configurations. In such instances, the terms left mouse button and
right mouse button should be switched throughout this document.

Probably the easiest way to familiarize yourself with the Shift Grip options is to try them
out on your radio. Using the preceding table as a guide, experiment with translating,
rotating, constraining translation and rotation to particular axes, and sizing your radio
view.

Lesson 2 Learning the Viewing Options

22

Remember, although the Shift Grip options may appear to be manipulating
objects, unless you are in Edit mode they are only manipulating your view
of the objects.

Review

In this lesson, you:

� Created a model radio.
� Located viewing information in the Command Window.
� Identified elements of the MGED viewing system.
� Viewed your radio from different angles.
� Worked with Shift Grips.

Lesson 3 Using the Insert Command to Size and Place Shapes

23

Lesson 3: Using the Insert Command to Size and Place Shapes

In this lesson, you will:

� Create a sphere and a right circular cylinder using the make command.
� Create the same two shapes using the in (insert) command.
� Combine arguments on the Command Line to streamline the entry of variables.
� Develop a combined-command form to help manage Command Line variables.
� Consider conventions for choosing names for your objects.
� View your shapes from different perspectives using options of the View menu.
� Quit the MGED program.

This lesson focuses on creating shapes from the Command Window using the make and
in commands. You will create a sphere (sph) and a right circular cylinder (rcc) using
both commands so that you can see how each command works. Later in the lesson, you
will practice viewing your model from different angles.

Creating a New Database from the Command Window

Create a new database and name it shapes.g. Title your database myShapes.

1. Creating a Sphere Using the Make Command

Begin by making the Command Window active (usually by clicking anywhere in the
window). Then, at the MGED prompt, type in the command:

make sph1.s sph <ENTER>

As noted in Lesson 1, this command tells MGED to:

make sph1.s sph
Create a shape Name it sph1.s Make it a sphere

Lesson 3 Using the Insert Command to Size and Place Shapes

24

Wireframe Sphere

A sphere shape has now been created, and a wireframe drawing should appear in your
Graphics Window.

To make the rcc from the Command Window prompt, type:

make rcc1.s rcc<ENTER>

Your Graphics Window should now display a large rcc that, from the default view of
az35, el25, looks as if it intersects the sphere you previously created.

Wireframe Sphere and Right Circular Cylinder

Lesson 3 Using the Insert Command to Size and Place Shapes

25

Using the make command is a fast and easy way to create a shape; however, most
models are going to require shapes that have specific parameters, such as height and
radius. So, a more precise way to create these shapes is to use the in (insert) command.

2. Using the In Command to Create Shapes

Begin by making the Command Window active (usually done by clicking anywhere in
the window). Then, use the Z (zap) command to clear the Graphics Window. You are
now ready to create a sphere using the in command. At the MGED prompt type:

in sph2.s sph<ENTER>

MGED will respond with:

Enter X, Y, Z of vertex:

You must tell MGED where to position the vertex (center) of your sphere in space. Type
at the MGED prompt:

4 4 4<ENTER>

As you work in MGED, you will often be asked to enter a value for a
vector or a vertex. In MGED, a vector represents the distance and direction
from one point in space to another, and a vertex is one single point in
space. The values entered for a vector are typically used to create an object
with specific dimensions. The values entered for a vertex place the object
in space.

Your sphere will now be placed at (x,y,z)=(4,4,4), as measured in millimeters. Notice
that the numbers are separated by spaces followed by the ENTER key. MGED will now
ask you to:

Enter radius:

Type in:

3<ENTER>

The radius of your sphere will be 3 mm. The following is the dialog that should appear
in your Command Window (including the appropriate responses).

mged> in sph2.s sph
Enter X, Y, Z of vertex: 4 4 4
Enter radius: 3
51 vectors in 0.000543 sec

Lesson 3 Using the Insert Command to Size and Place Shapes

26

The last line of this dialog is simply a record of the computer’s speed in drawing the
shape. It has no real usefulness to the user at this point.

A sphere has now been created, and a wireframe drawing similar to the one created using
the make command should appear in your Graphics Window.

To make the right circular cylinder, type at the Command Window prompt:

in rcc2.s rcc<ENTER>

MGED will ask you to enter values for x, y, and z of the vertex (where you want the
center of one end of the rcc placed in space). Type:

4 4 0<ENTER>

Be sure to leave spaces between each of these numbers.

MGED will now ask you to enter the x, y, and z values of the height (H) vector (i.e., how
long you want the rcc to be). Type:

0 0 4<ENTER>

The last value you will need to enter is the radius of the rcc. Type:

3<ENTER>

The dialog in the Command Window for the creation of the rcc should look like this:

mged> in rcc2.s rcc
Enter X, Y, Z of vertex: 4 4 0
Enter X, Y, Z of height (H) vector: 0 0 4
Enter radius: 3
42 vectors in 0.000214 sec

You should now have new versions of the sphere and rcc shapes. Notice how these two
shapes compare in size to the first two you created. The rcc is now in proportion to the
sphere and is placed in space off to the left in your Graphics Window. By specifying the
dimensions of the shapes and their locations in space, you were able to create the model
more precisely.

Lesson 3 Using the Insert Command to Size and Place Shapes

27

Shapes Created with Make Command Shapes Created with In Command

3. Combining Arguments on One Line

Another way to use the in command is to combine all of the required information on one
line. Once you become familiar with using the in command, you will probably prefer to
use this method as it allows you to input all the parameter values more quickly.

Clear the Graphics Window by using the Z command. Now make another sphere by
typing after the MGED prompt:

in sph3.s sph 4 4 4 3<ENTER>

The meaning of this longer form of the command is:

in sph3.s sph 4 4 4 3
Insert a

primitive
shape

Name it
sph3.s

Make the
primitive
shape a
sphere

Make the
x of the
vertex a

value of 4

Make the
y of the
vertex a

value of 4

Make the
z of the
vertex a

value of 4

Make the
radius a

value of 3

To make the right circular cylinder using this method, type after the MGED prompt:

in rcc3.s rcc 4 4 0 0 0 4 3<ENTER>

The meaning of this command is:

Lesson 3 Using the Insert Command to Size and Place Shapes

28

in rcc3.s rcc 4 4 0 0 0 4 3

Make
the x
of the
height
vector

a
value
of 0

Make
the y
of the
height
vector

a
value
of 0

Make
the z
of the
height
vector

a
value
of 4

Insert a
primitive

shape

Name
it

rcc3.s

Make the
primitive
shape a

right
circular
cylinder

Make
the x
of the
vertex

a
value
of 4

Make
the y
of the
vertex

a
value
of 4

Make
the z
of the
vertex

a
value
of 0

Make the shape four
units long, pointing

straight toward positive z

Make
the

radius
a

value
of 3

4. Making a Combined-Command Form for the In Command

When you are first starting to use MGED, if you want to use the Command Window
rather than the GUI, you may want to make yourself some blank, combined-command
forms for each type of primitive shape you will be creating. This can speed up the design
process and help remind you of which values must be entered for each shape. A form for
the sphere might be:

in ? sph ? ? ? ?

Value of
x

Value of
y

Value of
z

Insert a
shape

Name of
primitive

shape

Type of
shape is a

sphere Center

Radius of
sph

A Combined-Command Form for the rcc might be:

in ? rcc ? ? ?
Value
of x

Value
of y

Value
of z

Value
of x

Value
of y

Value
of z

Insert a
primitive

shape

Name
of

shape

Type of
shape is
a right
circular
cylinder

Vertex Height vector

Radius
of rcc

Lesson 3 Using the Insert Command to Size and Place Shapes

29

5. Considering MGED Naming Conventions

You may have noticed that each time you have created a sphere, or rcc, you have given it
a different name. MGED doesn’t care what name you give a shape, but you will find as
you develop models that it helps to have some formula, or conventions, when naming
shapes. Note also that each name must be unique in the database, and for BRL-CAD
releases prior to 6.0, names are limited to 16 characters in length.

In this lesson, we sometimes assigned names to the shapes based on their shape type and
the order in which we created them. We did this because the shapes had no real function,
except to be examples.

When you create real-life models, however, you will probably want to assign names as
we did for the radio component names, which were based on their functions (e.g., btn for
button, ant for antenna, etc.).

If you work with more experienced modelers, check with them to see what set of
conventions they use. If you work alone, develop a set of naming conventions that works
for you and then use it consistently.

6. Viewing the Shapes

Practice viewing your new shapes using the View menu. Manipulate your view using the
various mouse-key combinations identified in the previous lesson.

7. Quitting MGED

If you wish to quit MGED, at this point, type either the letter q or the word quit after the
Command Window prompt and then press ENTER. You may also quit the program by
selecting Exit from the File menu.

Review

In this lesson, you:

� Created a sphere and a right circular cylinder using the make command.
� Created the same two shapes using the in (insert) command.
� Combined commands to streamline the entry of variables.
� Developed a combined-command form to help manage Command-Line variables.
� Considered MGED naming conventions.
� Viewed your shapes from different perspectives using options of the View menu.
� Quit the MGED program.

Lesson 3 Using the Insert Command to Size and Place Shapes

30

Intentionally Left Blank

Lesson 4 Assigning Material Properties and Raytracing

31

Lesson 4: Assigning Material Properties and Raytracing

In this lesson, you will:

� Recall primitive shapes made previously.
� Make a region of two primitive shapes.
� Assign material properties to your primitive shapes from the Command Window.
� Clear the Graphics Window and draw the new region.
� Raytrace your design from the GUI.
� Use the GUI to change layers of the Graphics Window.
� Clear the Graphics Window after raytracing a model.

1. Opening the Database

To recall the primitive shapes made in the previous lesson, start MGED and go to the File
menu and select Open. A control panel will appear with a list of folders and files. Select
shapes.g and Open. A new box will appear, and you should click on OK.

You should now have two windows prominently displayed on your screen. At the
MGED prompt in the Command Window, type:

draw sph2.s rcc2.s<ENTER>

2. Creating a Region

Before you can raytrace your design, you have to make a region of the two shapes. A
region is an object that has uniform material properties. Most applications that use BRL-
CAD models consider regions as the basic components of the model. Regions are
constructed using the basic Boolean operations of union, intersection, and subtraction,
which are discussed in the next chapter.

At the MGED prompt, type:

r shapes2.r u sph2.s u rcc2.s<ENTER> [Note: Make sure you key in
the information correctly before
you press ENTER. Spaces, or
the lack thereof, are important.]

This command tells MGED to:

Lesson 4 Assigning Material Properties and Raytracing

32

r shapes2.r u sph2.s u rcc2.s
Make a
region

Name it
shapes2.r

Add the volume of
the shape

sph2.s Add the volume
of the shape

rcc2.s

3. Assigning Material Properties to a Region

Now type in:

mater shapes2.r<ENTER>

MGED will respond with:

shader=
Shader? ('del' to delete, CR to skip)

Type in:

plastic<ENTER>

MGED will ask:

Color = (no color specified)
Color R G B (0..255)? ('del' to delete, CR to skip)

Type in:

0 255 0<ENTER>

This will assign a light green color to the region. MGED will now ask:

Inherit = 0 lower nodes (towards leaves) override
Inheritance (0/1)? (CR to skip)

Type:

0<ENTER>

When you have completed this set of commands, your Command Window should look
like the following example:

Lesson 4 Assigning Material Properties and Raytracing

33

The Command Window Screen

The one-line version of this set of commands would be:

mater shapes2.r plastic 0 255 0 0<ENTER>

Diagrammed, this command says to:

mater shapes2.r plastic 0 255 0 0
Assign material
properties to:

the region
called shapes1.r

Make the
region of

plastic

Give it a color
of light green

Do not inherit
colors or

material type

4. Clearing the Graphics Window and Drawing the New Region

An easy way to clear the Graphics Window of the old design and draw the new region is
to type at the MGED prompt:

B shapes2.r<ENTER>

This command tells MGED to:

B shapes2.r
Blast (clear the Graphics Window and draw The region named shapes2.r

Lesson 4 Assigning Material Properties and Raytracing

34

The Blast command is shorthand for the combination of the Z and draw commands.

5. Raytracing Your Model

Now go to the File menu and select Raytrace. A dialog box called the Raytrace
Control Panel will appear. At the top are menus for Framebuffer and Objects. Select
Framebuffer. A drop-down menu will appear with six choices: Active, All, Rectangle
Area, Overlay, Interlay, and Underlay. Make sure the Active, All, and Underlay
options are activated (as shown by the presence of a red indicator to the left of each
choice). Select OK.

Note: When you select Raytrace from this dialog window, you start an
auxiliary program (rt) of the BRL-CAD package. The program only
raytraces objects that have been drawn in the Graphics Window. You may
have many shapes, regions, or combinations in a database, but if they aren’t
currently drawn in the Graphics Window, the raytracer will ignore them.

Change the background color produced by the raytracer by selecting Background Color
in the Raytrace Control Panel. A drop-down menu will appear with some predefined
color choices plus a color tool. Select the white option. The select button should now
appear white, in accordance with your selection.

Next select Raytrace from the four options along the bottom of the box. The Graphics
Window should start changing, and you will soon see your design in shades of green with
the wireframe superimposed on the design, as shown in the following example:

Raytraced Shapes

Lesson 4 Assigning Material Properties and Raytracing

35

As we have seen, you can specify the background color for the raytraced image.
You can also fill the entire framebuffer with the background color. To do this, select the
desired color and then click the fbclear (framebuffer clear) button at the bottom of the
Raytrace Control Panel.

6. Changing Layers of the Graphics Window

The Graphics Window of MGED is used to display different types of graphical
information: 3D wireframes and 2D pixels (or images). Conceptually, each type of data
occupies a separate layer in the display. The 3D wireframes occupy the wireframe layer,
while the 2D pixels (images) occupy the framebuffer layer. These layers can be thought
of as transparencies, and the order in which they are stacked and displayed can be
changed.

As mentioned previously, there is a Framebuffer menu within the Raytrace Control
Panel. At the top of this menu is a toggle button labeled Active. This turns the display of
the framebuffer layer on and off. Near the bottom of the same menu are three radio
buttons: Overlay, Interlay, and Underlay. When the underlay mode is selected, the
pixel data are displayed under or behind the vector data. Conversely, when the overlay
mode is selected, the pixel data are in front of the vector data. The interlay option is
similar to the overlay mode. The subtle difference is an advanced topic not covered here.

Framebuffer in Underlay Mode Framebuffer in Overlay Mode

To see how this works, go to the framebuffer menu and select Overlay. Notice that the
wireframe representation disappears. Where does it go? If you answered “behind the
framebuffer,” you would be correct. To view the model’s geometry, you would have to
make the framebuffer inactive or select underlay mode.

The wireframe layer has a yellow dot in the center that marks the center of the view
talked about in Lesson 2. This allows you to determine whether the framebuffer is in

Lesson 4 Assigning Material Properties and Raytracing

36

overlay or underlay mode. If you can see the yellow dot, the framebuffer is in underlay
mode. If you’ve told MGED to draw some geometry and the Graphics Window seems to
remain blank, you are probably seeing a blank framebuffer masking the wireframe layer.

Note that you can change the view in the wireframe, but the view in the framebuffer does
not automatically update to match. It is not possible to directly manipulate the view in
the framebuffer. You must raytrace again in order to update the framebuffer image.

7. Clearing the Graphics Window

To completely clear the Graphics Window, you have to handle both the wireframe and
framebuffer layers. Recall that you can clear the wireframe layer with the Z command.
For the framebuffer layer, there is the fbclear button on the Raytrace Control Panel.

In some instances, you may prefer to turn off the framebuffer instead of clearing it.
When the framebuffer is turned off, MGED runs faster because it doesn’t have to redraw
the framebuffer each time it updates the display. You can turn the framebuffer on and off
by toggling the Active item in the Raytrace Control Panel’s framebuffer menu.

Note that in BRL-CAD versions 5.1 and later, turning off the framebuffer
does not destroy the image it contains. Turning it back on displays the
same image. However, in earlier versions of the package, the contents of
the framebuffer are lost when it is turned off.

Review

In this lesson you:

� Recalled primitive shapes made previously.
� Made a region of two primitive shapes.
� Assigned material properties to your primitive shapes from the Command Window.
� Cleared the Graphics Window and draw the new region.
� Raytraced your design from the GUI.
� Used the GUI to change layers of the Graphics Window.
� Cleared the Graphics Window after raytracing a model.

Lesson 5 Learning About Boolean Expressions

37

Lesson 5: Learning About Boolean Expressions

In this lesson, you will:

� Learn about combinations and regions.
� Learn about Boolean operations.
� Make regions with Boolean operations.

This is an important lesson because Boolean operations are critical to the
modeling process. The order in which shapes are combined and the
operators used to combine the shapes will determine how the MGED
program interprets your model.

The correct use of Boolean expressions to modify geometric shapes is a
key skill in constructive solid modeling. It important to review these
concepts as many times as necessary. If it is difficult to absorb them all
now, come back to them later.

1. Combinations and Regions: Boolean Tools

There are conceptually two objects in MGED that support Boolean operations. One is
called a combination, the other is called a region.

As mentioned earlier, a typical geometric shape in MGED is called a primitive.
However, single primitives are often insufficient to fully describe the complex shape of
the object being modeled. So, combining two or more primitive shapes into other shapes
(called combinations) using Boolean operators allows you to artfully imitate the shape
and form of most complicated objects.

The previous chapter noted that material properties are associated with regions. Like
combinations, regions use Boolean operations to create complex shapes. The difference
is that regions are shapes that have material properties. They occupy three-dimensional
space, rather than simply defining a shape in space.

You can think of primitives and combinations as a blueprint for an object. The actual
object is created when a region is made. For example, you might make a blueprint of an
object such as a coffee mug, but then create that mug from different types of material
(e.g., ceramic or glass). Regardless of the material, the blueprint is the same.

Lesson 5 Learning About Boolean Expressions

38

When Boolean operations are used to build up complex shapes from simpler shapes, we
can call the result a shape combination. When they are used to define other logical or
hierarchical structure within the database, the result may be referred to as a group or an
assembly combination.

2. Boolean Operations

The three Boolean operators employed by the MGED program are union, subtraction,
and intersection. You can use Boolean operations to combine shapes to produce more
complex shapes.

1. Union Shapes: Merge two shapes.

2. Subtract Shapes: Remove the volume of one shape from another.

3. Intersect Shapes: Use only the parts of the two shapes that overlap.

Union

The union operator, u, joins shapes so that any point in at least one of them will be part of
the result. Union is a powerful and frequently used operator.

The Union of Two Spheres

Lesson 5 Learning About Boolean Expressions

39

Subtraction

When a primitive shape has a second, overlapping shape subtracted from it, the result is
that the second shape disappears, together with any common volume it had with the first
shape. The – (minus sign) operator signifies subtraction or difference. This operation is
especially useful in hollowing a body, removing an oddly shaped piece of a primitive
shape, or accounting for edge intersections of walls, plates, piping, or other connected
shapes.

In the following example, a dotted red line indicates that the sphere being subtracted
extends inside the sphere on the right. This overlapping portion is partially out of view in
the raytraced image.

Subtraction of One Sphere from Another Sphere

Intersection

The Boolean intersection operation, signified by a + (plus sign) operator, combines two
primitive shapes that overlap each other, saving only their common volume (the
nonoverlapped areas will not be present). An easy way to understand intersections is to
think of shapes as roads. The intersection is the place where two roads overlap.

Although many people find intersection operations harder to understand than unions and
subtractions, unusual/complex shapes can be expressed using the intersection operator.
For example, you can model a magnifying lens as the intersection of two spheres.

The intersection operation is rarely useful unless, as shown in the following figure, at
least two shapes overlap. The intersection of two shapes having no common points (i.e.,
no overlap) is the null set, so it includes no points of space at all.

Lesson 5 Learning About Boolean Expressions

40

Intersection of Two Spheres

There is one important restriction when using the Boolean subtraction and intersection
operators. There must be a first shape from which a second shape can be subtracted or
intersected. If you have only one shape within a region or combination, the operator will
be ignored and the union operator will always be used.

3. Making Regions with Boolean Operations

Begin by opening the database shapes.g that you created in Lesson 3. At the Command
Window prompt, type:

draw sph2.s rcc2.s<ENTER>

This lets us see the shapes we will be using to create our regions. As seen earlier, the two
shapes should look something like the following:

Lesson 5 Learning About Boolean Expressions

41

Two Primitive Shapes

In this lesson, we will create different shapes to demonstrate the function of Boolean
operations. In the Command Window, type the following:

r part1.r u rcc2.s – sph2.s<ENTER>

This command tells MGED to:

r part1.r u rcc2.s - sph2.s
Make a
region

Call it
part1.r

Merge… The shape
named rcc2.s

Subtract… The shape
named sph2.s

Note: The first member always has a lowercase u for an operator. The
second and subsequent members can use –, +, or u as needed. The process
of determining which operators to use, and in what order, is discussed in a
more advanced tutorial.

In the previous lesson, we applied material properties to objects from the Command Line.
Now we are going to use the graphical interface to do the same thing. From the Edit
menu, choose Combination Editor. This will pop up a dialog box. Click the button to
the right of the Name entry box and then click on Select from All. A drop-down menu
will appear with the regions you have created. Select part1.r. The result should look
like the following:

Lesson 5 Learning About Boolean Expressions

42

Combination Editor

Click on the button next to Color and select red from the pull-down menu.
Now click the OK button at the bottom left of the dialog window. This will apply your
changes and close the panel.

At the moment, we have only the primitive shapes displayed, not the region. Before we
can raytrace, we must remove the primitive shapes from the display, and draw the region.
Otherwise, we will not be able to see the region with the color properties we applied. We
can do this by typing:

B part1.r

We are now ready to raytrace this object. From the File menu, bring up the Raytrace
Control Panel and click the Raytrace button. The image you get should look similar to
the left-hand image that follows. Note that it may take several minutes to raytrace the
window, depending on the speed of your particular system.

Lesson 5 Learning About Boolean Expressions

43

Raytraced part1.r Raytraced part2.r

You should see that a spherical “bite” has been taken out of the top of the cylinder.

Next we will make a blue region using the intersection operator instead of subtraction.
Once again, we start by creating a region:

r part2.r u rcc2.s + sph2.s<ENTER>

For comparison to the GUI approach used to make part1.r, let’s use the Command Line
to assign the color to part2.r:

mater part2.r plastic 0 0 255 0<ENTER>

Finally, Blast this new region onto the display as follows:

B part2.r<ENTER>

Now raytrace the object. It should look similar to the preceding right-hand image.

Note: Remember to clear the Graphics Window and draw your new region
or combination before trying to raytrace the model. The raytracer ignores a
region or combination that is not drawn in the Graphics Window. The
color of the wireframe is your clue. If it doesn’t reflect the colors you’ve
assigned (e.g., everything is drawn in red even though you’ve assigned
other colors), then you haven’t cleared the screen of the primitive shapes
and drawn the new region or combination since the time you made it.

Lesson 5 Learning About Boolean Expressions

44

When you use the intersection operator, the order in which you specify the shapes doesn’t
matter. We would have gotten the same results if we had specified the Boolean operation
as

r part2.r u sph2.s + rcc2.s

However, when using the subtraction operator, the order of the two shapes is very
important. Let’s make a region with the order of the shapes reversed from that used for
part1.r:

r part3.r u sph2.s – rcc2.s

This time we won’t bother to set a color. (When no color is set for objects, the raytracer
(rt) will use a color of white. However, these objects may appear gray because of the
amount of light in the scene.) Blast this design to the display and raytrace it:

Raytrace part3.r

Now let’s raytrace all three objects we have created together. To draw the three regions
at once, we could type:

B part1.r part2.r part3.r

Doing this once is no problem. However, if these were three parts that made up some
complex object, we might like to be able to draw all of them more conveniently. To
make drawing a collection of objects together easier, we create an assembly combination
to gather them all together. We will create one called dome.c for our three regions. This
is accomplished by the following command:

comb dome.c u part1.r u part2.r u part3.r

Lesson 5 Learning About Boolean Expressions

45

Notice the similarity between this command and the r command we used to create the
regions.

Remember from the discussion at the beginning of this lesson, the difference between a
region and a combination is that combinations are not necessarily composed of only one
kind of material. Several objects of different materials can make up an assembly
combination such as the one we have just created.

Because creating assembly combinations is a very common task, there is a
shortcut command—the g (for group) command—to help make the task
easier. Creating dome.c using this command would look as follows:

g dome.c part1.r part2.r part3.r

Notice that you don’t have to type the u Boolean operators. The g
command unions all of its arguments.

All that is necessary to draw all three objects is the much simpler command:

B dome.c

Now we can raytrace the collected set and get the following image:

Raytraced dome.c

Lesson 5 Learning About Boolean Expressions

46

5. Operator Precedence

The shapes we have created here are fairly simple. In each case, a single primitive shape
is unioned, and subtraction or intersection operations are performed on that single
primitive shape. You should know that it is possible to use much more complex Boolean
equations to create the shape of objects. When you want to make such objects, keep in
mind the precedence of the Boolean operations. In the Boolean notation we are using,
the subtraction and intersection operators both have higher precedence than the union
operator has. So, for example:

comb demo.c u shape1 – shape2 u shape3 – shape4 + shape5

This would result in the following Boolean expression:

(shape1 – shape2) u ((shape3 – shape4) + shape5)

Review

In this lesson, you:

� Learned about combinations and regions.
� Learned about Boolean operations.
� Made regions with Boolean operations.

Lesson 6 Creating a Goblet

47

Lesson 6: Creating a Goblet

In this lesson, you will:

� Create a new database.
� Create, edit, and copy primitive shapes to make the parts of the goblet.
� Make regions of the parts.
� Make a combination of the regions.
� View a data tree.
� Raytrace your completed goblet.

In this lesson, you will create a goblet similar to the one in the following example.

Raytraced Goblet

1. Creating a New Database

First, start MGED from the shell prompt. Select File from the menu bar and then New.
A dialog box will appear, and it will ask you for a new database name. Type in goblet.g
at the end of the path name and click on OK to create the new database. The program
should tell you that the database was successfully created and it is using millimeters for
its unit of measure.

Lesson 6 Creating a Goblet

48

2. Creating, Editing, and Copying the Parts of the Goblet

Creating the Goblet Base

Go to the menu bar, select the Cones & Cylinders category, and then select rcc for right
circular cylinder. A dialog box will appear asking you to name the rcc. Type in base1.s
and then click on Apply (or press ENTER). A tall cylinder will appear in the Graphics
Window that is ready for you to edit.

Editing the Base

Go to the menu bar and select Edit and then Set H. Place the mouse pointer in the lower
half of the Graphics Window and click on the middle mouse button several times. The
cylinder will become shorter as you click. (Note that the closer your pointer is to the
midpoint of the Graphics Window, the smaller the change will be. As you click farther
away from the middle, the changes will be greater.) Continue clicking until the cylinder
looks like a flat disk, as shown in the following figure. Click on Accept when done.

The rcc Goblet Base

Creating the Goblet Stem

Go to the menu bar, select Create, select Ellipsoids, and then click on sph to select a
sphere. You will be asked to provide a name for the sphere. Type ball1.s in the name
box and then click on Apply. A large sphere will appear in your Graphics Window.

Lesson 6 Creating a Goblet

49

Go to the Edit menu and click on Scale. Place the mouse cursor/pointer in the lower half
of the Graphics Window and click the middle mouse button until your sphere is about
one-quarter the diameter of the base, as shown in the illustration that follows.

First Sphere on Goblet Stem

To move the ball on top of the goblet base, press the SHIFT key and left mouse button to
drag the sphere into place. You can check your placement by going to the View option of
the menu bar and selecting a Front view. In this view, you can align the center line of
the sphere with the center line of the rcc. Repeat this process from a Left view. When
you believe the sphere is correctly aligned with the rcc, go back to the Edit option and
click on Accept.

Adding Additional Balls to the Goblet Stem

The next step is to add more spheres to your goblet stem. An easy way to do this is to go
to the Edit menu and select Primitive Editor. A dialog box will appear. Enter the name
for the first sphere you created, ball1.s. Next, click on Reset (to reset the values of the
dialog box to those of ball1.s) or hit return in the Name box. Again in the Name box,
change ball1.s to ball2.s by using the BACKSPACE key to erase the 1. Type in a 2 and
then click on Apply.

Repeat this process with an sph named ball3.s. When you are done, click on OK to close
the Primitive Editor box. You now have three balls for your stem, but you won’t be able
to see them until you edit them because they are in the same place.

Lesson 6 Creating a Goblet

50

An even easier way to make the copies is to use the cp (copy) command as follows:

cp ball1.s ball2.s<ENTER>
cp ball1.s ball3.s<ENTER>

Editing the Balls of the Goblet Stem

To edit the new balls you have created, go to the Edit menu and click on Primitive
Selection. A box will appear with the names of your base and balls. Double click on
ball2.s to select it. You will see the first ball change color to white. Use the SHIFT key
and any mouse button to drag this ball (which is really ball2.s) so that it rests on top of
(and slightly overlaps) ball1.s . Check your views to align the ball as you did with the
first ball. (Note that this alignment is even easier if you drag using the SHIFT and ALT
keys and the right mouse button, which will constrain the movement of the ball to the Z
direction.) Click on Accept under the Edit option when finished.

If you were modeling a real goblet, you would want the balls of the stem to overlap
slightly. If they barely touch, the stem would be very weak. If they do not touch, then
the stem would be made of separate pieces of material suspended in space.

Repeat these steps to move ball3.s into position. When you are finished, your goblet
should look as follows from a front view:

Goblet with Ball Stem

Lesson 6 Creating a Goblet

51

Making the Goblet Basin

The next step is to make the goblet’s basin. Go to the Create menu and click on eto to
select an elliptical torus. Name the torus basin1.s. Click on Apply. A large eto will
appear in your Graphics Window.

Go to the Edit menu and select Set C. Place the mouse arrow in the upper half of the
Graphics Window and click on the middle mouse button until your eto is approximately
the size of the one in the following figure. If you need to, use Scale to make the basin
more proportional to the rest object and use the Shift Grips and multiple views to position
the basin.

Goblet Base, Stem, and Basin – Front View

3. Making Regions of the Goblet’s Base, Stem, and Basin

In order for MGED to know what primitives to raytrace, you must first designate these
areas through Boolean operations. In this example, the two Boolean operations used will
be the union (u) and the subtraction (-).

To make the stem a region, type at the Command Window prompt:

r stem1.r u ball1.s u ball2.s u ball3.s<ENTER>

To make the base a region, type at the prompt:

r base1.r u base1.s – ball1.s<ENTER>

Lesson 6 Creating a Goblet

52

To make the basin a region, type at the prompt:

r basin1.r u basin1.s – stem1.r<ENTER>

Note that when creating base1.r, we subtracted a primitive shape from another primitive
shape. When creating basin1.r, we subtracted an entire region from a primitive shape.

4. Making a Combination of the Regions

To combine all the regions into one object, you will need to perform one last Boolean
operation. At the prompt in the Command Window, type:

comb goblet1.c u basin1.r u stem1.r u base1.r<ENTER>

This operation tells the MGED program to:

comb goblet1.c u basin1.r u stem1.r u base1.r
Make a

combination
Name it
goblet1.c

The combination
will be made of a

union of

the
region

basin1.r

and the
region
stem1.r

and the
region
base1.r

5. Viewing a Data Tree

MGED requires a certain logical order to the model data tree so it knows how to raytrace
the various elements. In the goblet, the base and basin consist of regions composed of
only one primitive shape each. The stem, in contrast, consists of a region composed of
the union of three spheres. The three regions were combined to form a complex object.
To view the data tree for this combination, type at the Command Window prompt:

tree goblet1.c<ENTER>

MGED will respond with:

goblet1.c/
u basin1.r/R

u basin1.s
- stem1.r/R

u ball1.s
u ball2.s
u ball3.s

u stem1.r/R
u ball1.s
u ball2.s
u ball3.s

u base1.r/R

Lesson 6 Creating a Goblet

53

u base1.s
- ball1.s

The name of the overall combination of this design is goblet1.c. It is composed of the
three regions: base1.r, stem1.r, and basin1.r. The region base1.r is composed of the
primitive shape named base1.s minus ball1.s. The region stem1.r is composed of three
primitive shapes named ball1.s, ball2.s, and ball3.s. The region basin1.r is composed of
the primitive shape named basin1.s minus the region stem1.r.

Remember that regions define volumes of uniform material. In the real world (and in
BRL-CAD), no two objects can occupy the same space. If two regions occupy the same
space, they are said to overlap. To avoid having the base and stem overlap, we subtract
ball1.s from base1.s when we create base1.r. We also subtract the stem1.r from basin1.s
when we create basin1.r. This removes material from one region that would otherwise
create an overlap with another. The following figure shows the overlap between ball1.s
and base1.s in blue. This is the volume that is removed from base1.r.

6. Raytracing the Goblet

To raytrace the goblet using the default material properties of gray plastic, go to the File
menu and click on Raytrace. When the Raytrace Control Panel appears, change the
color of the background by clicking on the button to the right of the Background Color
box and then clicking on the white option in the drop-down menu. Next, click on
Raytrace.

When you have finished viewing the goblet from the front view, go to the View option of
the menu bar and select az35, el25 and then raytrace. If you want to view the goblet

Lesson 6 Creating a Goblet

54

without the wireframe, go to the Framebuffer option of the Raytrace Control Panel and
click on Overlay. The goblet should look similar to the following illustration:

The Raytraced Goblet from an az35, el25 View

Review

In this lesson, you:

� Created a new database.
� Created, edited, and copied primitive shapes to make the parts of the goblet.
� Made regions of the parts.
� Made a combination of the regions.
� Viewed a data tree.
� Raytraced your completed goblet.

Lesson 7 Assigning Material Properties to Your Goblet

55

Lesson 7: Assigning Material Properties to Your Goblet

In this lesson, you will:

� Review how to open an existing database.
� Assign colors and the plastic shader to regions of the goblet.
� Use the transparency and mirror reflectance options of the shader.
� Raytrace various forms of your goblet.

In this lesson, you will add material properties to the goblet you created in the previous
lesson. The finished goblet should appear similar to the one in the following example.

The Completed Goblet with Material Properties Assigned

1. Review of Opening an Existing Database

If you exited after the last lesson, open your goblet database (goblet.g) again. The easiest
way to do this is to open the database from the Terminal Window when first starting
MGED. To do this, type at the prompt:

mged goblet.g<ENTER>

Alternatively, you could start the MGED program, and select File from the menu bar and
then Open. A dialog box will appear and ask you to enter an existing database name.
Type in goblet.g (or click on it in the directory listing) and then click on Open. The

Lesson 7 Assigning Material Properties to Your Goblet

56

program should tell you that the database was successfully opened and it is using
millimeters for its unit of measure. Click on OK.

Drawing the Goblet in the Graphics Window

To draw the goblet you made in the previous lesson, move the mouse pointer to the
Command Window and type at the prompt:

draw goblet1.c<ENTER>

A wireframe representation of the goblet should appear in the Graphics Window.

2. Assigning Colors and the Plastic Shader to Regions of the Goblet

Go to the Edit menu and click on Combination Editor. To select the various regions of
the goblet you made in the last lesson, go back to the Name box and click on the button
to the right of the entry box. A submenu will appear. Double click on Select From All
Regions. A list of regions created for this database will appear, including base1.r,
basin1.r, and stem1.r. Double click on base1.r to select that region.

Click on the button to the right of Color in the Combination Editor, and a drop-down
menu will appear with a list of available colors along with a color tool that will let you
create more colors. Click on blue. Next, click on the button to the right of the shader
box. A list of available shaders will appear. Click on plastic. A new set of options will
appear. You will use two of these options in this lesson. Click on Apply to assign the
color blue and the plastic shader to the goblet base.

Repeat this process to assign the color green and plastic shader to the stem1.r region and
the color yellow and plastic shader to the basin1.r region. When you are finished, click
on OK to dismiss the Combination Editor box.

Although the changes have been made to the database, the display in the Graphics
Window doesn’t reflect them yet. So, return the mouse pointer to the Command Window
and type at the prompt:

B goblet1.c<ENTER>

This command clears the screen and redraws the goblet with the color selections applied.

Lesson 7 Assigning Material Properties to Your Goblet

57

Raytracing the Goblet

To raytrace the goblet, go to the File menu and click on Raytrace. The Raytrace Control
Panel will appear. Move your mouse pointer to the button to the right of Background
Color and click on the white option. To make the raytracing go faster, you can resize the
Graphics Window to make it smaller before you open the raytrace panel. When the
window is resized, click on Raytrace to start the raytrace process.

Note: As mentioned previously, it is undesirable to have regions that
overlap. Although having overlaps may not always affect the raytracing
process, if the model were going to be statistically analyzed, overlaps
would create problems.

While the goblet is raytracing, move your mouse cursor to the Framebuffer option of the
Raytrace Control Panel menu bar and click on Overlay. When the raytrace process is
finished, you should have a goblet similar to the following example:

The Raytraced Goblet

Lesson 7 Assigning Material Properties to Your Goblet

58

3. Using the Transparency and Mirror Reflectance Shader Options

The raytraced goblet looks fairly realistic, but it could be enhanced by using other options
of the Combination Editor. When you selected the plastic shader, a new set of options
appeared, allowing you to choose various properties or attributes of the shader. Among
the options was Transparency. You can adjust this property on individual regions by
entering any value between 0.0 (opaque) and 1.0 (transparent).

Just as you applied color and a shader to each of the goblet’s three regions, you can adjust
the transparency of each region by (1) selecting the region in the Combination Editor,
(2) left clicking on the box next to Transparency, and (3) entering any value between
0.0 and 1.0.

For this lesson, open the Combination Editor, click on the button to the right of the Name
box, choose Select From All Regions in the drop-down menu, and then choose the
base1.r region. Make sure plastic is the shader selected and type in .5 to make your
region semi-transparent. Click on Apply and repeat this process for each of the other two
regions. Then Raytrace the goblet, which should look similar to the following:

The Semi-Transparent Raytraced Goblet

The colors of the semi-transparent goblet are brighter than those of the opaque goblet
because more light is allowed to penetrate the plastic material. You could make the
goblet more realistic in appearance by returning to the Combination Editor and adding a
Mirror Reflectance. For each region, place your mouse cursor in the box next to this
option, click the left mouse button, and type in .45. This will cause about half of the
available light to be reflected off the surface of the goblet.

Lesson 7 Assigning Material Properties to Your Goblet

59

4. Raytracing the New Forms of the Goblet

Click on Apply and Raytrace the design. The new image should appear similar to the
following example:

The Raytraced Goblet with Mirror Reflectance Added

The new image is substantially different in appearance from the original image. Continue
changing the values of transparency and mirror reflectance to see how they impact the
resulting image.

Remember that when using these options, the combined value of both options should be
less than 1.0. The following table shows you just some of the many possible
combinations you could use:

Transparency Value Mirror Reflectance Value
.50 .49
.35 .64
.20 .57
.10 .89
.89 .10

Lesson 7 Assigning Material Properties to Your Goblet

60

Review

In this lesson, you:

� Reviewed how to open an existing database.
� Assigned colors and the plastic shader to regions of the goblet.
� Used the transparency and mirror reflectance options of the shader.
� Raytraced various forms of your goblet.

Lesson 8 Assigning More Material Properties to Your Goblet

61

Lesson 8: Assigning More Material Properties to Your Goblet

In this lesson, you will:

� Use the specular and diffuse reflectivity options of the plastic shader.
� Assign values to the refractive index of the plastic shader.
� Assign values to the shininess option of the plastic shader.
� Assign values to the extinction option of the plastic shader.
� Experiment with various combinations of plastic shader options.

Open the goblet.g database using whichever method you prefer. Go to the Edit menu
and click on Combination Editor. Select basin1.r.

In the last lesson, we assigned values for two shader attributes—transparency and mirror
reflectance. In this lesson, we will assign values for still other shader properties. When
the plastic shader is selected for region basin1.r, eight attribute entry boxes currently
appear in the Combination Editor. These boxes contain either the values that the user has
previously set (e.g., those we previously set for transparency and mirror reflectance) or
the default values that the raytracer will use if no others are specified. When any of these
values is modified, the change can be seen in braces in the shader string box and in the
appropriate attribute entry boxes, as indicated by the arrows in the following example:

The Combination Editor

Lesson 8 Assigning More Material Properties to Your Goblet

62

Note that in BRL-CAD versions prior to 5.2, the default values are used,
but they are not displayed in the shader attribute boxes.

In this example, the shader entry box indicates that the transparency (tr) is set at .5 and
the mirror reflectance (re) is set at .45. The eight abbreviations currently used in the
shader entry box are as follows:

tr - transparency sp - specular reflectivity ri - refractive index ex - extinction
re - mirror reflectance di - diffuse reflectivity sh - shininess em - emission

Specular and Diffuse Reflectivity

When light reflects off of a shiny surface, it produces two types of reflections. The most
noticeable highlights are caused by specular reflectivity. The rest of the surface produces
diffuse reflectivity. The shinier (or glossier) the surface is, such as on a crystal vase, the
more specular reflectivity that is produced. The duller the surface is, such as with a wall
painted with flat paint, the more diffuse reflectivity that is produced. A model of the
relationship between these reflectivities is shown in the following illustration:

Specular vs. Diffuse Reflectivity Model

As seen in the illustration, diffuse reflectivity shows an object’s color by reflecting
ambient light off the object. The upper left ball exhibits the maximum value for diffuse
reflectivity (1.0), and as a result, its surface color is uniform.

Lesson 8 Assigning More Material Properties to Your Goblet

63

Specular reflectivity, on the other hand, reflects the color of a light source. The lowest
right ball, with the maximum value for specular reflectivity (1.0), shows a white light
source being reflected off the surface of the ball.

The range for both specular and diffuse reflectivity is 0.0 through 1.0. However,
combined values for these are typically equal to 1.0. Remember, if you are going to set
values for one of these attributes, you need to assign a corresponding value to the
complementary attribute so that the combination of the values equals 1.0.

Refractive Index

When light passes through one medium (e.g., air) into another medium (e.g., water), it
bends from its original path. The degree to which the light bends is called the refractive
index. The more dissimilar the media are, the greater the degree of refraction that will
occur. For example, sunlight passing through a diamond will bend more than the same
sunlight through optical glass. The diamond would have a higher refractive index
(approximately 2.42) whereas optical glass would have a lower refractive index
(approximately 1.71).

The range of index of refraction for MGED is 1.0 (the index for air) or greater. This
parameter is only useful for materials that have a transparency greater than 0. The
following drawing of sunlight passing through water shows how refraction works.

A Ray of Sunlight Passing Through a Body of Water

Lesson 8 Assigning More Material Properties to Your Goblet

64

Shininess

The shininess of an object affects the size of the specular component of the plastic shader.
The shinier an object’s surface is, the smaller the reflection of the light source on the
object’s surface will be. The range for shininess is typically an integer value from 1 to
10.

Extinction

The term extinction applies to the transmissive component of the plastic shader, and it
indicates the amount of light absorbed by the object’s material. The default value is 0.0,
and the range can be any nonnegative number. Using this attribute can dramatically
impact other attributes of the shader, especially the refractive index.

Emission

Emission is a relatively new feature that has been added to the BRL-CAD package. It
concerns the amount of artificial brightness of the object.

Applying Attributes of the Plastic Shader to the Goblet

Now that you understand the various attributes of the plastic shader, it is time to
experiment with how they affect the final product—the goblet you created in the previous
two lessons. You have already assigned values for transparency and mirror reflectance.
Now add the attributes of specular reflectivity and diffuse reflectivity to basin1.r. Once
you see how these two attributes affect your design, add the refractive index, then
shininess and extinction. You might want to capture some of these changes so that you
can refer to them later, when you are creating other models using the plastic shader.
Remember to click Apply in the Combination Editor to actually incorporate the changes.

As you change the values for the attributes of the plastic shader, you will notice that some
changes do not significantly alter the design. This is because there are a variety of ways
to produce a particular look on an object. The following are two examples of the goblet
with various values of the plastic attributes (which do create a noticeable difference)
applied to basin1.r.

Lesson 8 Assigning More Material Properties to Your Goblet

65

Goblet Assigned .9 for Specular Reflectivity and .1 for Diffuse Reflectivity

Same Goblet Also Assigned a Value of .5 for Extinction

Lesson 8 Assigning More Material Properties to Your Goblet

66

By the time you have finished experimenting with changing attributes of the plastic
shader, your Combination Editor window might look something like this:

The Combination Editor Window

Notice that while the shader string entry box reflects the values set by the user in the
attribute entry boxes (e.g., the Transparency of .5), it does not reflect the default values
(e.g., the Shininess of 10).

Lesson 8 Assigning More Material Properties to Your Goblet

67

Review

In this lesson, you:

� Used the specular reflectivity and diffuse reflectivity options of the plastic shader.
� Assigned values to the refractive index of the plastic shader.
� Assigned values to the shininess option of the plastic shader.
� Assigned values to the extinction option of the plastic shader.
� Experimented with various combinations of plastic shader options.

Lesson 8 Assigning More Material Properties to Your Goblet

68

Intentionally Left Blank

Lesson 9 Creating a Globe in a Display Box

69

Lesson 9: Creating a Globe in a Display Box

In previous lessons, you combined various shapes into new objects. These new objects
have been created using solid building blocks, much like those used in a wooden toy
truck. However, in real life, most of the objects that you will design will consist of an
outside shell and various inside parts. Therefore, in this lesson you will:

� Use the GUI to create a display box using arb8 shapes.
� Create a globe inside the display box.
� Assign material properties to make the objects appear more realistic.
� Rotate an object 180˚ using the rotate option of the Edit menu.
� Use the color option of the Combination Editor to produce customized colors.

Create a New Database

Begin by creating a new database. Name your new file cube.g.

1. Creating the Display Box

Go to the Create menu, select the Arbs category, and then select an arb8 (arbitrary
convex polyhedron with eight vertices). When asked to provide a name for the arb8,
name it cube1.s. Click on Apply. Go to the Edit menu and click on Accept. You now
have a cube for the outside of the display box, as in the following:

The Outside of the Display Box

Lesson 9 Creating a Globe in a Display Box

70

Repeat the first part of this process to produce another arb8, this time calling this shape
cube2.s. Go to the Edit menu and click on Scale. Place the mouse pointer in the lower
half of the Graphics Window screen and click the middle mouse button until the second
cube is slightly smaller than the first cube, as follows:

The Inside and Outside of the Display Box

Go to the View menu and change view to Front. Go to the Edit menu and click on
Translate (move). Hold down the SHIFT key and drag the inside cube into position in
the center of the outside cube. Repeat this process from the Top view and Left view
until the smaller cube is placed in the center of the outside cube when viewed from all
perspectives. When you are finished, go back to Edit and click on Accept.

2. Create a Globe Inside the Display Box

Go to the Create menu and select sph from the list of Ellipsoids. Name the shape
globe1.s and click on Apply.

A sphere should appear inside the cube in the Graphics Window. Change View to Front.
Go to the Edit menu and select Scale. Reduce the size of the sphere until it will fit inside
of the cube and then drag it into the center of the cube. Go to Edit and Accept your
changes. Your globe and box should appear similar to the following in the az35, el25
view:

Lesson 9 Creating a Globe in a Display Box

71

Wireframe Representation of Globe and Display Box

To view contents of the database, type at the Command Window prompt:

ls<ENTER>

You should see cube1.s, cube2.s, and globe1.s listed as shapes you have created. To
make regions of these shapes, type at the prompt:

r cube1.r u cube1.s - cube2.s<ENTER>
r globe1.r u globe1.s<ENTER>

3. Using the Combination Editor to Assign Material Properties that Make the
Objects Appear More Realistic

Go to Edit and select Combination Editor. In the dialog box, click the button next to
the Name entry box. Select globe1.r from Select From All or Select From All Regions.
Double click on the globe1.r name. Assign this region a Shader of cloud. Check the
Boolean Expression box to make sure the region is made up of u globe1.s. Click on
Apply to accept your choices. Go to View and select az35, el25.

Go back to Name and select cube1.r from the Select From All menu. Assign this region
a Shader of glass. The glass shader is a shortcut to individually changing the attributes
of the plastic shader to make it appear like glass.

Go to the Color option and enter the values 244 255 255. This will give your glass box a
light cyan color. Click on Apply to accept your changes.

Lesson 9 Creating a Globe in a Display Box

72

Before you can raytrace your design, you need to clear the Graphics Window by typing Z
at the Command Window prompt because both shapes and regions are being displayed at
this point. Next, type in the Command Window:

draw cube1.r globe1.r<ENTER>

The display box and globe should reappear in the Graphics Window. Go to the File
menu and select Raytrace. Next, select the white option for Background Color. Click
on Raytrace.

Your design should show a light cyan-colored glass cube with a blue globe inside. To
eliminate the wireframing, go to Framebuffer (in the Raytrace Panel) and select
Overlay. The display should appear similar to the following illustration:

Raytraced Display Box and Globe

To make this design more interesting, you can place the globe on a base. Do this by
going back to Framebuffer and clicking on Active to deactivate the framebuffer. Next,
go to the Create menu and select the trc (truncated right cone) under the Cones &
Cylinders category. Name the shape base1.s. Working from a Front view, go to the
Edit menu and select Scale. Click the middle mouse button to reduce the trc in size until
the bottom of it appears to be an appropriate size for the globe base. (You may need to
increase the size of your Graphics Window or decrease your geometry view size to see
the bottom of the trc.) Next, reduce the height of the shape by selecting Set H from the
Edit menu and clicking with the middle mouse button. You may need to switch back and
forth between these two options a few times to get an acceptable size. When finished,
however, do not click on Accept yet, as we have more changes to make.

Lesson 9 Creating a Globe in a Display Box

73

4. Moving and Rotating an Object

As with other features in MGED, moving and rotating objects can be accomplished in
several ways, according to the amount of precision desired. As previously described, the
Shift Grip functions can be used as a quick way to change an object when its exact angle
and location do not necessarily matter. Alternatively, to achieve greater precision, the
Translate (move) and Rotate commands under Edit can be selected and specific
parameter numbers can be entered in the Command Window. In this lesson, we will
experiment with both methods.

With your trc still in edit mode and still in a Front view, use the SHIFT key and the left
mouse button to drag your shape (the bottom of the base) and sit it on the floor of the
cube (just touching the inside box). Note that you could have selected Translate under
Edit and entered parameters on the Command Line to move the trc to an exact location;
however, in this case, aligning the shape with the drag-and-drop “eyeballing” method was
appropriate. At this point, you may notice that your trc needs to be resized a little to
better fit the globe. Use Scale and Set H as needed and then Accept your changes.

Now we need to make a second trc named base2.s, which we will use for the top of the
base. On the Command Line, type:

cp base1.s base2.s

The second trc will appear directly on top of the first trc, so we will have to use
Primitive Selection under the edit menu to put base2.s in edit mode so that we can flip it
upside down and then drag it to the top of the first trc.

To do this, we could use the CTRL and ALT (constrained rotation) keys and left mouse
button and then move the mouse up or down until the trc is upside down. (If this method
is used, note that you can release the mouse button and regrab the object if you need to.)
However, because we know we want to rotate the shape an exact amount (180˚) about the
x axis, let’s use a more precise method to flip the shape. Select Rotate under Edit and
then type in the following parameters (abbreviated as p) on the Command Line:

p 180 0 0<ENTER>

Our shape should have flipped upside down and jumped to the bottom of the first trc.
(The two zeros you input indicate no rotation along the y and z axes.) Now use the
SHIFT key and the left mouse button to drag base2.s upward and sit it on top of base1.s.
The two shapes should form a base in which to hold your globe. Check your alignment
using multiple views and then Accept your changes.

Lesson 9 Creating a Globe in a Display Box

74

Go to Edit and Primitive Selection and click on globe1.r/globe1.s. As you did with the
trc shapes, use the Shift Grips to drag the globe down until it is in place on the base. Go
back to Edit and click on Accept. Your design should look as follows:

Wireframe Representation of Globe and Base in Display Box

To make a region of the base, type in the Command Window:

r base1.r u base1.s u base2.s<ENTER>

5. Use the Color Tool of the Combination Editor to Produce Customized Colors.

In the Combination Editor window, click the button to the right of the Name entry box
and then Select From All. Choose base1.r. Assign the base a Shader of plastic. In the
Color box, enter the numbers:

217 217 217

Apply your changes. Before you can raytrace your completed design, you must first
clear the Graphics Window and rebuild your design by typing at the Command Window
prompt:

Z<ENTER>
draw cube1.r globe1.r base1.r<ENTER>

Change your view to az35, el25 and then raytrace your design, which should appear
similar to the following:

Lesson 9 Creating a Globe in a Display Box

75

Review

In this lesson, you:

� Used the GUI to create a display box using arb8 shapes.
� Created a globe inside the display box.
� Used the Combination Editor to assign material properties that make the objects

appear more realistic.
� Rotated an object 180˚ using the rotate option of the Edit menu.
� Used the color option of the Combination Editor to produce customized colors.

Lesson 9 Creating a Globe in a Display Box

76

Intentionally Left Blank

Lesson 10 Creating a Mug

77

Lesson 10: Creating a Mug

In this lesson, you will:

� Create an outside cylinder using the in command.
� Create an inside cylinder for hollowing out the larger shape cylinder.
� Create a handle for your mug.
� Create a combination to produce the body of your mug.
� Create a combination to join the handle to the body.
� Create a region of combined shapes with the same material and color.

In this lesson, you will be continuing your work creating real-life objects—in this case,
the basic body shape of a coffee mug. In the next lesson, you will refine the body so that
it is more realistic.

Creating a New Database

Create a new database and call it mug.g. Go back to the File menu and select
Preferences, then Units, and then inches. This will create your body using inches.
(Note: You could also do this by typing units in at the Command Window prompt.)

1. Creating the Outside Cylinder Using the In Command

To begin making the body, you will need to create an outside right circular cylinder. At
the MGED prompt, type:

in bodyout.s rcc

The diagram of this command is as follows:

in bodyout.s rcc
Make a shape Call it bodyout.s The shape type is right

circular cylinder

MGED will ask you the following questions about the cylinder you want to make. Type
in the values given in bold. Make sure you leave spaces between variable values.

Enter X, Y, Z of vertex: 0 0 0<ENTER>
Enter X, Y, Z of height (H) vector: 0 0 3.5<ENTER>
Enter radius: 1.75<ENTER>

Lesson 10 Creating a Mug

78

Note that the streamlined way to do this would be to type:

in bodyout.s rcc 0 0 0 0 0 3.5 1.75<ENTER>

The diagram of this command is as follows:

in bodyout.s rcc 0 0 0 0 0 3.5 1.75
Make a
shape

Call it
bodyout.s

The shape
type is right

circular
cylinder

The x, y, and
z of vertex is

0 0 0

The x, y, and
z of the

height vector
is 0 0 3.5

The radius is
1.75

A shape of a cylinder, in wireframe form, will appear in the Graphics Window.

2. Creating the Inside Cylinder

Using this same method, type in the information for the inside right circular cylinder.
This cylinder will be used to hollow out the outside cylinder. Whenever you are creating
a hole in the surface of an object, make sure the shape creating the hole protrudes through
the surface. This will ensure that you don’t inadvertently leave a thin film of material
where the two surfaces meet.

in bodyin.s rcc 0 0 0.25 0 0 3.5 1.5<ENTER>

The diagram of this command is:

in bodyin.s rcc 0 0 0.25 0 0 3.5 1.5
Make a
shape

Call it
bodyin.s

The shape
type is right

circular
cylinder

The x, y, and
z of vertex is

0, 0, and
0.25

The x, y, and
z of the

height vector
is 0, 0, and

3.5

The radius is
1.5

A second cylinder, inside the first cylinder, should now appear in the Graphics Window.

Lesson 10 Creating a Mug

79

3. Creating the Handle

Now you will want to enter some information about the body’s handle. The shape type
for the handle is an elliptical torus. At the Command Window prompt, type:

in handle.s eto 0 2.5 1.75 1 0 0<ENTER>

The diagram of this command is:

in handle.s eto 0 2.5 1.75 1 0 0
Make a
shape

Name it
handle.s

The shape
type is

elliptical
torus

The x, y, and
z of the
vertex is

0, 2.5, and
1.75

The x, y, and
z of the
normal

vector is
1, 0, and 0

The program will ask you to enter more values for the elliptical torus you are creating.
Type in the values shown in bold.

Enter X, Y, Z, of vector C: .6 0 0<ENTER>
Enter radius of revolution, r: 1.45<ENTER>
Enter elliptical semi-minor axis, d: 0.2<ENTER>

A doughnut shape should appear on the right-hand side of the body. If you look
carefully, you can see that about one-third of the elliptical torus intersects the body.

4. Creating the Bodyout.s-Bodyin.s Combination

The next step is to combine the two cylinders into the body of the mug. To do this, type:

comb body.c u bodyout.s - bodyin.s<ENTER>

You have told the program to make the combination body.c out of the union of
bodyout.s minus bodyin.s.

comb body.c u bodyout.s - bodyin.s
Make a

combination
Call it
body.c

Create a
union of

bodyout.s
cylinder

and subtract bodyin.s
cylinder

5. Creating the Handle.s - Bodyout.s Combination

To combine the handle with the outside cylinder, type:

comb handle.c u handle.s - bodyout.s<ENTER>

Lesson 10 Creating a Mug

80

comb handle.c u handle.s - bodyout.s
Make a

combination
Call it

handle.c
Create a
union of

the handle.s
torus

and subtract the
bodyout.s
cylinder

6. Creating the Region Mug.r

The last step, of this part of making the mug is to make a region out of your
combinations. Type:

r mug.r u body.c u handle.c<ENTER>

r mug.r u body.c u handle.c
Make a region of

shapes of the same
material and color

Call it
mug.r

Create a
union of

the body.c
combination

and merge
it with

the handle. c
combination

If you did this correctly, the program should say something similar to:

Defaulting item number to 1002
Creating region id=1001, air=0, GIFTmaterial=1, los=100

Wireframe Mug

Lesson 10 Creating a Mug

81

You should now have the region mug.r that is a combination of shapes containing the
same material and color. You could assign color and material at this point, but you will
want to do some more work on this design to make it more realistic. So, for now, review
the lessons of this chapter. When you are ready to work again, you can continue refining
your design in the next lesson.

Review

In this lesson you:

� Created an outside cylinder using the in command.
� Created an inside cylinder for hollowing out the larger shape cylinder.
� Created a handle for your mug.
� Created a combination to produce the body of your mug.
� Created a combination to join the handle to the body.
� Created a region of combined shapes with the same material and color.

Lesson 10 Creating a Mug

82

Intentionally Left Blank

Lesson 11 Refining the Mug

83

Lesson 11: Refining the Mug

In this lesson, you will:

� Assign material properties to the mug using the mater command.
� Refine the mug.
� Combine the shapes.

In this lesson, you will refine the mug you made in the previous lesson. If you stopped at
the end of that lesson, open the database mug.g before continuing.

1. Assigning Material Properties to the Mug Using the mater Command

Assigning material properties to a region can be done with either the mater or shader
command. The program will respond with a series of questions. These concern the
various parameters of the shader you select to use in rendering the object.

The most commonly used shader is the plastic shader, which uses a Phong lighting
model. Select the plastic shader and set the color to a medium shade of green. The
dialog in the Command Window should appear as follows:

mged> mater mug.r<ENTER>
Shader =
Shader? ('del' to delete, CR to skip) plastic<ENTER>
Color = (No color specified)
Color R G B (0..255)? ('del' to delete, CR to skip)
32 128 32<ENTER>
Inherit = 0: lower nodes (towards leaves) override
Inheritance (0|1)? (CR to skip) 0<ENTER>

Enter the appropriate information that is shown in bold font. If you want to use the
streamlined version, type:

mater mug.r plastic 32 128 32 0<ENTER>

Diagrammed, this command says:

mater mug.r plastic 32 128 32 0
Assign material

properties to a region
Called
mug.r

Make the
material plastic

Color the mug
green

Turn
inheritance off*

*Note: Inheritance is an advanced topic beyond the scope of the present discussion.

Lesson 11 Refining the Mug

84

2. Raytracing the Mug

Open the Raytrace Control Panel and select Raytrace. You should get an image of a
green mug on a dark background (we use a white background here to save printing ink).
If your mug is not green, you probably need to redraw your wireframe before raytracing.

Raytraced Mug Without Rim

3. Refining the Mug

Now let’s improve the cup. Notice that the lip of the cup looks a little too squared off.
To fix this, you will need to add a rounded top to the lip. You can do this by positioning
a circular torus shape exactly at the top of the cup. Then you can add it to the
combination body.c.

At the MGED prompt, type:

in rim.s tor 0 0 3.5 0 0 1 1.625 0.125<ENTER>

in rim.s tor 0 0 3.5 0 0 1 1.625 0.125
Make a
shape

Call it
rim.s

Make the
shape a
torus

With x, y, and
z vertices of 0,

0, and 3.5

With x, y, and z
of normal vector
being 0, 0, and 1

Radius 1
is 1.625

inches and

Radius 2
is 0.125
inches

Lesson 11 Refining the Mug

85

4. Combining the Shapes

To combine the torus with the cup, you will need to type at the prompt:

comb body.c u rim.s<ENTER>

Now you are faced with a unique situation. The shape rim.s was added to the list of
objects being displayed when it was created. However, now it is also a part of mug.r (via
body.c). If you raytrace the current view, you will have two copies of this shape. The
raytracer will complain that they overlap.

One way to fix this is to clear the display, redisplay the new, complete object, and then
raytrace. As discussed previously, the fbclear command in the Raytrace Control Panel
clears the framebuffer display, and the Z command in the Command Window clears all
wireframed objects. You can redisplay the objects you want to raytrace with the draw
command. Type at the prompt:

Z<ENTER>
draw mug.r<ENTER>

Raytrace your mug. It should now look similar to the following.

The Mug Made Through the Command Line

Lesson 11 Refining the Mug

86

Review

In this chapter, you:

� Assigned material properties to the mug using the mater command.
� Refined the mug by smoothing the lip.
� Combined the shapes.

Lesson 12 Creating the Mug Through the GUI

87

Lesson 12: Creating the Mug Through the GUI

In this lesson, you will:

� Create the shapes of the mug through the GUI.
� Use new shapes to create the handle and rim of the mug.
� Combine the shapes.
� Make a region of the combinations.
� Check the data tree and make corrections.
� Assign material properties using the Combination Editor.

In the previous two lessons, you created a mug by entering commands at the Command
Window prompt. Now, you will create the same type of mug using the GUI and different
shapes.

Begin by opening a new database. Call it mug2.g.

1. Creating the Body of the Mug

Go to the Create menu and select rcc (right circular cylinder) under the Cones &
Cylinders category. Enter the name for the rcc. Call it outside.s.

Go to the Edit menu, where you will be offered the following options:

Set H
Set H (Move V)
Set A
Set B
Set c
Set d
Set A,B
Set C,D
Set A,B,C,D
Rotate H
Rotate AxB
Move End H(rt)
Move End H

Rotate
Translate
Scale
None of the Above

Reject
Accept
Apply
Reset

Primitive Editor
Combination
Editor

Note: The first column includes shape-specific functions. The other columns are
functions common to all shapes.

Lesson 12 Creating the Mug Through the GUI

88

Select Set H. From a Front view, move your mouse cursor to the lower half of the
screen and click the middle mouse button to reduce the scale of the cylinder’s height.
Next select Set A,B,C,D. Move your mouse cursor to the upper half of the screen and
click the middle mouse button to increase the diameter of the cylinder. Accept your
changes when your object appears similar to the one shown in the following figure.

Note: If at any time when you are editing through the GUI you don’t like
your changes, you can click on Reject to refuse the changes or Reset to
return the shape to its original form. However, if you select Reject, you
will have to re-enter the Primitive Edit state, as described in previous
lessons.

Next, create an inside right circular cylinder and name it inside.s. Edit the cylinder the
same way you edited the outside cylinder. Before you accept your changes, change View
to Top and make sure your cylinders are in alignment. If the cylinders are out of
alignment, use the SHIFT key and left mouse button to drag the inside cylinder into
position. Return your View to Front and Accept your changes when the cylinders are
lined up. Your cylinders should look like those in the following example:

Two Cylinders Shown from a Front View

Lesson 12 Creating the Mug Through the GUI

89

Note: Remember that when you scale a shape, the position of the mouse
pointer in the Graphics Window will determine how large or small the
change will be. The closer the mouse pointer is to the center horizontal
line of the window, the smaller the change will be, and vice versa.

2. Creating the Handle of the Mug

Previously, we made the handle of the mug using an elliptical torus. In this lesson, we
make the handle by selecting a torus (which is a doughnut shape) from the menu of
shapes. Name the torus handle.s. The Edit menu will now offer a different set of
parameters than those of the right circular cylinders, as shown in the following list:

Set Radius 1
Set Radius 2

Rotate
Translate
Scale
None of the Above

Reject
Accept
Apply
Reset

Primitive Editor
Combination
Editor

In this instance, Set Radius 1 changes the distance from the center of the doughnut hole
to the middle of the dough. Set Radius 2 changes the radius of the dough ring. With the
same technique used in editing the rcc shapes, edit the size of the torus until it looks
similar to the following examples:

Mug and Handle from a Front View Mug and Handle from a Top View

Check your mug from the top to make sure the handle is aligned. Accept your changes
when you are finished.

Lesson 12 Creating the Mug Through the GUI

90

3. Creating the Rim of the Mug

To make the rim of the mug, go to the Create, select tor, and name it rim.s. Select the
Rotate command and type on the Command Line:

p 0 90 0<ENTER>

to rotate the torus on its side (90˚ about the y axis). Then, Scale and edit the various
parameters of the torus using the front and top views until the mug looks similar to the
following example. Make sure you Accept your changes when you are finished.

Mug with Rim Shown from a Front View

4. Creating Combinations of the Various Shapes

To combine the various shapes of the mug, type the following commands at the
Command Window prompt:

comb mug.c u outside.s - inside.s<ENTER>
comb handle.c u handle.s - outside.s<ENTER>
comb mug.c u rim.s<ENTER>

Note: Refer to the previous two lessons to recall how each of these commands works.

Lesson 12 Creating the Mug Through the GUI

91

5. Making a Region of the Combinations

To make a region out of the combinations you just created, type at the Command
Window prompt:

r mug.r u mug.c u handle.c<ENTER>

6. Checking the Data Tree

Before continuing, it would be wise to check your data tree and make sure it agrees with
the following tree:

mug.r/R
u mug.c/

u outside.s
- inside.s
u rim.s

u handle.c/
u handle.s
- outside.s

If your data tree doesn’t look like this example, you will need to go back and figure out
where you went wrong. If necessary, you can kill off a shape, combination, or region by
typing at the Command Window prompt:

kill [name of shape, combination, or region]<ENTER>

For example, in this lesson you may have created an extra shape, named rim2.s, which
you no longer want. To kill this shape, you would type:

kill rim2.s<ENTER>

7. Assigning Material Properties Using the Combination Editor

Go to the Edit menu and select Combination Editor. Type mug.r in the Name entry
box. Press ENTER. Type 0 148 0 in the Color entry box. Select a plastic shader.
Check the Boolean Expression box to make sure it says:

u mug.c
u handle.c

When you are finished, click on Apply and then Dismiss. In the Command Window
then, type at the prompt:

B mug.r<ENTER>

Lesson 12 Creating the Mug Through the GUI

92

8. Raytracing the Design

Go to the View option of the menu bar and select az35, el25. Go to File and then
Raytrace. Select a white background color and Raytrace your design. Click on
Overlay. When the raytracing is finished, it should look like the following example:

The Completed Raytraced Mug

Review

In this lesson, you:

� Created the shapes of the mug through the GUI.
� Used new shapes to create the handle and rim of the mug.
� Combined the shapes.
� Made a region of the combinations.
� Checked the data tree and made corrections.
� Assigned material properties using the Combination Editor.

Lesson 13 Placing Shapes in 3-D Space

93

Lesson 13: Placing Shapes in 3-D Space

In this lesson, you will:

� Create, edit, and place shapes in 3-D space.
� Create custom colors using the Combination Editor.
� Identify the attributes of the checker shader.
� Identify how RGB colors are created.

In previous lessons, you created and edited shapes. You also placed objects in three-
dimensional space. This lesson will provide more advanced practice on creating and
editing shapes and placing them in 3-D space.

The design you will make in this lesson is a simple candle in a candle holder sitting on a
table (as shown in the following figure). In the next lesson, you will add decorations and
lighting to make the design more realistic.

The Candle Design

Begin by creating a new database called candle.g. Title your database Candle Tutorial.

Lesson 13 Placing Shapes in 3-D Space

94

1. Creating the Tabletop

Create an arb8 from the GUI. Name the shape arb8.s. Go to View and select Front.

Go to the Edit option of the menu bar. The arb8 needs to be made larger, so, under the
Edit menu, select Scale. Put the mouse pointer in the upper half of the screen to make
the arb8 larger and click the middle mouse button until the sides of the arb8 touch each
side of the screen. Use the SHIFT key and left mouse button to drag the arb into
position, if necessary.

Under the Edit menu, select Move Faces and then Move Face 4378. Place the mouse
pointer in the lower half of the screen and click the middle mouse button until the arb8 is
about the thickness of a tabletop. Go back to Edit and Accept the changes, and then use
the SHIFT and any mouse key to position the tabletop so that it appears similar to the
following:

Wireframe Representation of Tabletop from Front View

Make a region of the tabletop by typing at the Command Window prompt:

r table1.r u arb8.s<ENTER>

Lesson 13 Placing Shapes in 3-D Space

95

2. Creating the Candle Base

Create an eto and name it eto1.s. To create the bottom of the candle base, you will need
to flip the eto 180˚. Type at the Command Window prompt:

rot 0 180 0<ENTER>

This tells MGED to rotate the shape 180˚ along the y axis. Next, select Scale and make
the eto a little smaller than its default size. Place the eto on the tabletop by using the
SHIFT key and left mouse button to drag the base into position.

View your design from different angles to make sure the eto sits flush on the center of the
tabletop. Click on Accept when you are satisfied with its size and placement. Your base
should be similar to the one shown as follows:

Wireframe Representation of Tabletop and First eto

The next step in creating a candle base is to make a right circular cylinder (rcc). Name
the shape rcc1.s.

Go to Edit. In addition to the standard commands, you will be presented with a menu of
thirteen shape-specific ways to edit this shape.

Lesson 13 Placing Shapes in 3-D Space

96

Set H
Set H (Move V)
Set A
Set B
Set c
Set d

Set A,B
Set C,D
Set A,B,C,D
Rotate H
Rotate AxB
Move End H(rt)
Move End H

Scale the shape until it is slightly larger in diameter than the top of the eto1.s (you can
check this by switching to a top view). Go back to Edit and select Set H. Reduce the
height of the shape until the rcc is about two times the height of eto1.s. Position the
cylinder on the candle-holder base. Check the placement of the rcc from the top, left, and
front to ensure that it is centered in the eto. Make sure the bottom of the rcc is not quite
touching the tabletop. Accept your changes. When done, your design should look like
the following:

Wireframe Representation of Tabletop, First eto and First rcc

Lesson 13 Placing Shapes in 3-D Space

97

The last step in making the candle base is to create another eto. Name it eto2.s. Edit this
shape as you did the previous eto and place it on top of the rcc, as shown in the following
figure. Accept your changes when finished. Your candle base should now look like this:

Wireframe Representation of Tabletop and Candle Base

Make a region of the three shapes of the base. Name it base1.r. Your Boolean
expression should read:

r base1.r u eto1.s u rcc1.s u eto2.s

Note that we could have written it

r base1.r u eto1.s u eto2.s u rcc1.s

but the first expression is preferred to be consistent with the order of a later example. In
a moment, we will want to remove some material that eto2.s gives us. By placing eto2.s
last in the list, we can perform this removal easily.

3. Creating the Candle

Create an rcc and name it rcc2.s. Edit the shape as you did the previous rcc. When you
are done, it should look similar to the one in the following illustration. (Note: After you
have accepted the changes, you can get all of your tabletop and candle in the Graphics

Lesson 13 Placing Shapes in 3-D Space

98

Window by using the SHIFT key and left mouse button to move your view of the
design.)

Wireframe Representation of Tabletop, Candle Base, and Candle

Make a region of the candle. Your Boolean statement should read:

r candle1.r u rcc2.s

Now we create a cylindrical cutout in the base for the candle to sit in. To do this we can
use the shape of the candle, as follows:

r base1.r – rcc2.s

Earlier we had mentioned that we would want to remove some material that we got from
eto2.s. Now we have done it.

4. Creating the Candle Flame

Create a particle (part) and name it part1.s. Edit and position the shape until your
design looks like the following one:

Lesson 13 Placing Shapes in 3-D Space

99

Wireframe Representation of Completed Candle Design

Make a region of the flame by typing at the Command Window prompt:

r flame1.r u part1.s<ENTER>

5. Making a Combination of the Base, Candle, and Flame

To make a combination of the parts of the candle, type at the Command Window prompt:

comb candle1.c u base1.r u candle1.r u flame1.r<ENTER>

6. Checking the Data Tree

Now that you have made a number of regions and a combination, it would be a good time
to check your data tree and make sure it agrees with the following tree. If you find that
you have made a mistake in any of the parts of the tree, you can change them in the
Boolean Expression box of the Combination Editor (refer to Lesson 5). At the
Command Line prompt, type:

tree candle1.c<ENTER>

Your Boolean expression should read:

Lesson 13 Placing Shapes in 3-D Space

100

candle1.c/
u base1.r/R

u eto1.s
u rcc1.s

u eto2.s
- rcc2.s

u candle1.r/R
u rcc2.s

u flame1.r/R
u part1.s

7. Assigning Material Properties to the Elements of the Design

To assign material properties to your design, go to the Edit menu and select the
Combination Editor. Assign the following material properties to each of the elements:

Element Shader Color(s) Other
Tabletop Checker Red (255 0 0); White (255 255 255) Scale (10)

Candle Base Plastic Medium Gray (128 130 144)
Candle Plastic Light Blue (0 166 255)
Flame Plastic Light Yellow (255 255 190)

Notice that the checker shader for the tabletop includes two color values and a scale
value. Type the values for red, white, and a scale of 10 in the boxes, as follows:

Combination Editor with the Checker Shader Selected

Lesson 13 Placing Shapes in 3-D Space

101

For the rest of the elements of the design, use the Color Tool to make the colors shown
or simply type them in the Color text box, remembering to leave a space between each
set of numbers.

As discussed previously, a color is made up of three numbers, ranging
from 0 to 255. The first number represents the amount of red, the second
represents the amount of green, and the third represents the amount of
blue used to make the color. A color of 0 0 0 is black, and 255 255 255
is white. This method of creating colors is different from mixing
pigment colors used in painting because you are dealing with light.
While it may seem strange at first, most MGED users quickly become
adept at creating RGB colors.

8. Raytracing Your Design

Before raytracing, change the View to az35, el25 to give a better view of the completed
design and then Blast the old design by typing at the Command Window prompt:

B table1.r candle1.c<ENTER>

This command tells the MGED program to:

B table1.r candle1.c
Clear the Graphics

Window
Draw the region named

table1.r
Draw the combination

named candle1.c

To provide the most light on your design, use a white background color. Your raytraced
candle should look similar to the following:

Lesson 13 Placing Shapes in 3-D Space

102

Raytraced Candle Design in Overlay Mode

Review

In this lesson, you:

� Created, edited, and placed shapes in 3-D space.
� Created custom colors using the Combination Editor.
� Identified the attributes of the checker shader.
� Identified how RGB colors are created.

Lesson 14 Gaining More Practice Placing Shapes in Space

103

Lesson 14: Gaining More Practice Placing Shapes in Space

In this lesson, you will:

� Create copies of a shape using the Primitive Editor.
� Draw a grid to help position objects.
� Check the data tree and make corrections (if needed).
� Assign material properties using the Combination Editor.

In previous lessons, we created and edited shapes and placed objects in 3-D space. This
lesson provides more advanced practice in these areas using the candle design you
created in the last lesson.

Open the candle.g database if it isn’t already open and draw candle1.c.

1. Making the First Sphere

Using the GUI, create a sphere named sph1.s. Go to the View menu and select Top
view. Go to the Edit menu, select Scale, and size the sphere until it is proportionally
about the same size as the one in the following illustration:

Sphere Placed on Candle Base from Top View

Lesson 14 Gaining More Practice Placing Shapes in Space

104

2. Using the Draw Grid Feature

Drag the sphere into position on the rcc, as shown in the previous illustration. To make
this task a little easier, you can go to the Modes menu and click on Draw Grid. This
will create a grid overlay in the Graphics Window, which can help you position your
spheres on the candle base.

3. Using the Multipane Feature

As discussed earlier, another feature that is available to help you position each sphere is
the Multipane option under the Modes menu. This will allow you to see multiple views
of the design you are creating.

Multipane Feature

As you move a shape, the change in position will be reflected in each pane. The
multipanes help you visualize where the shape is in 3-D space. In the default mode, the
top left pane shows the top view, the top right pane shows the current view, the bottom
left pane shows the front view, and the bottom right pane shows the left view. To turn off
either the grid or the multipane functions, go back to Modes and click on the feature you
want to disable.

4. Creating Copies of a Shape

To make more jewels for the base, you could use the copy command on the Command
Line (cp sph1.s sph2.s), but another way to do this is to go to the Edit menu and select
Primitive Editor. Type sph1.s in the text box to the right of Name. Click on Reset and

Lesson 14 Gaining More Practice Placing Shapes in Space

105

then change the name to sph2.s and click Apply. Continue doing this until you’ve made
eight jewels. Because each of the new spheres is an exact copy of the first sphere, you
won’t be able to see them until you select and then move them.

The Primitive Editor Dialog Box

To position your new spheres, go to Primitive Selection. A submenu of shapes you have
created will drop down. Use the scrollbar to the right of the list of shapes to access the
spheres you have created, as shown in the following illustration.

Drop-Down Menu of Primitives Available Through Primitive Selection

Lesson 14 Gaining More Practice Placing Shapes in Space

106

Click on sph2.s and drag it into position. Once you have positioned the eight spheres
around the rcc, your design should look similar to the following ones when viewed from
the top and front.

Candle from Top View Candle from Front View

Notice from the front view that there appears to only be five spheres around the base of
the candle, but there are eight spheres when you view the design from the top. That is
because you are viewing 3-D space on a 2-D screen and the spheres in the back are
behind the ones in the front. If you change the view to an az35, el25 view, all of the
spheres will appear, as shown in the following figure. This is one reason why it is
important to continually check your design from multiple views. A mistake in placement
that doesn’t appear from one view may be very noticeable from another view.

Candle Viewed from az35, el25

Lesson 14 Gaining More Practice Placing Shapes in Space

107

5. Making Regions of the Spheres

Now that all your spheres are made and in place, it is time to make a region of each
sphere. To do this, type the following in the Command Window:

r sph1.r u sph1.s<ENTER>
r sph2.r u sph2.s<ENTER>
r sph3.r u sph3.s<ENTER>
r sph4.r u sph4.s<ENTER>
r sph5.r u sph5.s<ENTER>
r sph6.r u sph6.s<ENTER>
r sph7.r u sph7.s<ENTER>
r sph8.r u sph8.s<ENTER>

There are three easier ways to make all of the regions. The first involves
typing the first command:

r sph1.r u sph1.s<ENTER>

and then using the up arrow to recall this command. Now use the left
arrow to move backward in the Command Line to replace both occurrences
of the number “1” with “2” and press ENTER. Repeat this for each of the
numbers 3 through 8.

The second approach is based upon the fact that the Command Line
interpreter of MGED uses the Tcl/Tk language. This gives us access to
some convenient loop commands. The following will make all of the
regions for us in a single command:

foreach i { 1 2 3 4 5 6 7 8 } { <ENTER>
 r sph$i.r u sph$i.s <ENTER>
}<ENTER>

This is much easier and faster than either of the previous methods.
However, if there were many more spheres (say 1000 or more), then it
might be easier to use a third approach, which employs a different loop
type:

for {set i 1} {i <= 1000} {incr i} {<ENTER>
 r sph$i.r u sph$i.s <ENTER>
}

Next, go to Edit and then Combination Editor. Select sph1.r from the Select From All
choice in the pull-down menu to the right of the Name entry box. Assign properties of

Lesson 14 Gaining More Practice Placing Shapes in Space

108

plastic and the color red and then press Apply. We then can go back to the Select From
All menu listing and repeat this process for the other seven spheres. Alternatively, we
could use Apply after selecting the appropriate material properties and then type in the
next sphere’s name; however, this method requires the user to remember to update the
Boolean Expression box (e.g., change u sph1.s to u sph2.s) so that the Booleans for one
shape are not applied to another shape.

Once again, we are performing the same operation multiple times. This is
another good opportunity to use a loop.

foreach i { 1 2 3 4 5 6 7 8 } {<ENTER>
 mater sph$i.r “plastic” 255 0 0 0<ENTER>
}<ENTER>

In general, the graphical interface is good for doing one thing at a time or
doing highly visual operations. Repetitive operations are best performed
using a Command Line interface.

6. Combining the Spheres with the Candle Base

We are now faced with an important decision. At the moment, the jewels overlap a
portion of the candle base (specifically, the rcc1.s portion). Because two objects cannot
occupy the same space, we must decide how to resolve this situation. There are two
choices:

1. We can have perfectly round jewels with dents in the side of the candle base
where the jewels are mounted.

2. We can have a perfectly round base with a cylindrical bite taken out of the
back of each jewel.

For this lesson, we will use the first choice.

Now we are faced with a second decision: how to achieve this result. The key is that the
space the jewels occupy must be subtracted from the correct part (rcc1.s) of the base.

On the Command Line, create rcc1.c by typing:

comb rcc1.c u rcc1.s – sph1.r – sph2.r – sph3.r – sph4.r –
sph5.r – sph6.r – sph7.r – sph8.r<ENTER>

Next, bring up the Combination Editor and select base1.r. Change the union of rcc1.s in
the Boolean Expression window to a union of rcc1.c, and click OK.
The tree of base1.r should now look like:

Lesson 14 Gaining More Practice Placing Shapes in Space

109

u base1.r/R
u eto1.s
u rcc1.c

u rcc1.s
- sph1.r/R

u sph1.s
- sph2.r/R

u sph2.s
- sph3.r/R

u sph3.s
- sph4.r/R

u sph4.s
- sph5.r/R

u sph5.s
- sph6.r/R

u sph6.s
- sph7.r/R

u sph7.s
- sph8.r/R

u sph8.s
u eto2.s

- rcc2.s

Note that we could have achieved the same results on the Command Line
by using the rm (remove) command to remove rcc1.s from base1.r and
then adding rcc1.c:

rm base1.r rcc1.s<ENTER>
r base1.r u rcc1.c<ENTER>

This would have resulted in a very similar tree as above:

u base1.r/R
u eto1.s

u eto2.s
- rcc2.s
u rcc1.c

u rcc1.s
- sph1.r/R

u sph1.s
- sph2.r/R

u sph2.s
- sph3.r/R

u sph3.s
- sph4.r/R

u sph4.s
- sph5.r/R

u sph5.s

Lesson 14 Gaining More Practice Placing Shapes in Space

110

- sph6.r/R
u sph6.s

- sph7.r/R
u sph7.s

- sph8.r/R
u sph8.s

Finally, we could have avoided making an intermediate object in the
database by moving rcc1.s to the end of the Boolean equation for base1.r
and then subtracting each of the jewels from base1.r (hence, removing
material from rcc1.s). This would have resulted in:

u base1.r/R
u eto1.s

u eto2.s
- rcc2.s
u rcc1.s
- sph1.r/R

u sph1.s
- sph2.r/R

u sph2.s
- sph3.r/R

u sph3.s
- sph4.r/R

u sph4.s
- sph5.r/R

u sph5.s
- sph6.r/R

u sph6.s
- sph7.r/R

u sph7.s
- sph8.r/R

u sph8.s

It would be good practice to consider the relative merits of each of the
approaches discussed.

Now we need to add the jewels to the whole of candle1.c:

comb candle1.c u sph1.r u sph2.r u sph3.r u sph4.r u sph5.r
u sph6.r u sph7.r u sph8.r<ENTER>

There are just a couple of things left to do before you raytrace your design. If you have
enabled Multipanes or Draw Grid, go back to the Modes menu and disable them. Then,
clear your screen and draw your new design by typing in the Command Window:

B candle1.c table1.r

Lesson 14 Gaining More Practice Placing Shapes in Space

111

Your new design should appear in the Graphics Window. Open the Raytrace Control
Panel and select a pale blue color (200 236 242) by typing the three values in the
Background Color entry box. When you raytrace your design, it should look similar to
the following one:

Raytraced Candle with Jeweled Base

Review

In this lesson, you:

� Created copies of a shape using the Primitive Editor.
� Drew a grid to help position objects.
� Checked the data tree and made corrections (if needed).
� Assigned material properties using the Combination Editor.

Lesson 14 Gaining More Practice Placing Shapes in Space

112

Intentionally Left Blank

Lesson 15 Creating a Toy Truck

113

Lesson 15: Creating a Toy Truck

In this lesson, you will:

� Create a toy truck from three shapes.
� Make copies of shapes using the Primitive Editor.
� Make combinations and regions of a more complex object.
� Check the data tree for accuracy.
� List contents of the database.
� Assign material properties using the Combination Editor.
� Identify the difference between OK, Accept, Apply, Reset, Cancel, and Dismiss.
� Identify the on-screen help option.
� Identify the stacker option.
� Experiment with the attributes of the camo shader.

In previous lessons, you created and edited shapes to produce simple objects. This lesson
focuses on creating a slightly more complex object, a toy truck, from the Command
Window. Your completed truck should look similar to the following truck:

.

Raytraced Toy Truck Design

Lesson 15 Creating a Toy Truck

114

Begin by creating a new database called truck.g.

1. Creating an rpp for the Cab of the Truck Using the In Command

To make the cab of the truck, you will create a right parallel piped using the in (insert)
command. At the Command Window prompt, type:

in cab1.s rpp<ENTER>

MGED will ask you to enter values for XMIN, XMAX, YMIN, YMAX, ZMIN, and
ZMAX. Type at the prompt:

0 1 0 1 0 1<ENTER>

This will tell MGED to:

0 1 0 1 0 1
Make the

value of the
rpp’s XMIN

0

Make the
value of the

rpp’s
XMAX 1

Make the
value of the
rpp’s YMIN

0

Make the
value of the

rpp’s
YMAX 1

Make the
value of the
rpp’s ZMIN

0

Make the
value of the

rpp’s ZMAX
1

You could also have used the streamlined version of:

in cab1.s rpp 0 1 0 1 0 1<ENTER>

A cube shape should appear in the Graphics Window, as follows:

Wireframe Representation of Shape cab1.s

Lesson 15 Creating a Toy Truck

115

2. Using the Inside Command to Create an rpp for the Hood of the Cab

To make the hood of the cab, you will need to make another rpp shape, this time using
the inside command. This special command was originally created to hollow out objects
such as gas tanks and boxes; however, it can be used to create any new shape that has
some relationship to a pre-existing shape. In this lesson, it is used to cut away material
above the hood and in front of the cab.

If you are using BRL-CAD version 6.0 or later, at the Command Window prompt, type:

inside cab1.s caboff1.s .5 -.1 .7 -.1 -.1 -.1<ENTER>

The inside command tells MGED to:

inside cab1.s caboff1.s .5 -.1 .7 -.1 -.1 -.1
Inside

the
shape

named
cab1.s,

create rpp
called

caboff1.s

Make
face
1234

(bottom)
.5 units
thick

Make
face
5678
(top)

-.1 units
thick

Make
face
1485
(rear)

.7 units
thick

Make
face
2376

(front)
-.1 units

thick

Make
face
1265

(right)
-.1 units

thick

Make
face
3478
(left)

-.1 units
thick

Note: In this example, each negative thickness number indicates that caboff1.s will
protrude through the corresponding face of cab1.s.

Note that in BRL-CAD versions 6.0 and later, the faces of an rpp are
numbered in a different order than in previous versions. So, if you are
using a pre-6.0 release of the package, the following parameter order must
be used for the aforementioned inside command:

inside cab1.s caboff1.s -.1 .7 -.1 -.1 .5 -.1<ENTER>

(The order of faces in this case is front, rear, right, left, bottom, top instead
of that specified for versions 6.0 and later.)

When in Multipane mode, the design should resemble the following illustration.

Lesson 15 Creating a Toy Truck

116

Truck Cab with Cutoff

3. Using an rcc to Create a Wheel Well in the Cab

Make a cylinder (rcc) to use for cutting away a space for the first wheel of the cab. At
the Command Window prompt, type:

make well1.s rcc<ENTER>

Go to the Edit menu and click on Primitive Selection, then well1.s. After selecting a
Left view, go back to Edit and select Scale. Reduce the size of the rcc until its diameter
is about the right size for a wheel well. Go back to Edit and select Rotate. As discussed
previously, one way to easily rotate the rcc is by using the CTRL key and the left mouse
button to drag the top lip of the rcc down (in a straight line) until the A and C edit labels
overlap. However, because we know we want to flip the object exactly 90˚ along the x
axis, a better choice is to use the Command Line and type:

p 90 0 0<ENTER>

After doing so, you may still have to use the Set H and Scale editing options to resize
and the SHIFT key and left mouse button to position your wheel well. When satisfied,
select Accept. Your design should look similar to the following in Multipane mode:

Lesson 15 Creating a Toy Truck

117

Multipane View of Truck with First Wheel in Place

4. The Difference Between OK, Accept, Apply, Reset, Cancel, and Dismiss

The GUI environment of MGED offers users several options for applying, accepting, or
rejecting changes made through buttons at the bottom of dialog pop-up windows. To use
any of these options, just place the mouse cursor over the desired button and click the left
mouse button.

Selecting the Accept or OK button will tell MGED to record the changes you have made
to a shape, region, or combination. MGED uses the Accept and OK buttons
interchangeably. When you click on Accept or OK, the window you are using will
automatically close.

The Apply button tells MGED to apply a change you have made and wait for further
instructions. The window does not automatically close. This enables you to make
changes to several things without having to reopen the window for each change.

The Reset button tells MGED to reset values you have changed in a dialog box to the last
values you applied or accepted. The Reset button does not close the dialog box. The
Cancel or Dismiss buttons discard any changes made in the dialog box and leave values
unchanged from their last stored settings. These two buttons close the dialog box.

Lesson 15 Creating a Toy Truck

118

5. Using the Primitive Editor to Make a Copy of the Wheel Well

To make a copy of your wheel well, go to the Edit menu and select Primitive Editor,
which will contain information about the last shape edited through the dialog box (or
myPrimitive if nothing has been edited). Erase the old shape’s name in the Name entry
box. Type in well1.s and press Reset (or press Enter while the cursor is still in the
Name entry box). The parameter values of the old shape will be replaced by those of the
new shape. The Primitive Editor will change and look something like the following
example:

The Primitive Editor

Go back to the Name text box and change the 1 to a 2 and click on OK. Change to
Front under the View menu. Go to Edit/Primitive Selection and click on well2.s. Use
the SHIFT and left mouse button to drag the new wheel well into position, as shown in
the following illustration. Check your alignment in Multipane mode and then click on
Accept when you are finished.

Lesson 15 Creating a Toy Truck

119

Placement of the Second Wheel

6. Making a Combination of the Cab Shapes

It is now time to make a combination of the various cab shapes.

comb cab1.c u cab1.s – caboff1.s – well1.s – well2.s<ENTER>

This command tells MGED to:

comb cab1.c u cab1.s - caboff1.s - well1.s - well2.s
Make a

combination
Name

it
cab1.c

Make
a

union

of the
shape
cab1.s

minus the shape
caboff1.s

minus the
shape

well1.s

minus the
shape

well2.s

Before you go any further, you should check your data tree by typing tree cab1.c. The
data tree should say:

cab1.c/
u cab1.s
- caboff1.s
- well1.s
- well2.s

If you type ls (list) at the Command Window prompt, you should find that your database
is composed of the combination cab1.c and the shapes cab1.s, caboff1.s, well1.s, and
well2.s. You will find as you make more complex objects that you will periodically refer
to the list of the database to ensure it is composed of the elements you want.

Lesson 15 Creating a Toy Truck

120

7. Creating an rpp for the Body of the Truck Using the In Command

To make the body of the truck, type at the Command Window prompt:

in body1.s rpp 0 2 0 1 0 1.5<ENTER>

By now, you should know what this command tells MGED to do. If you have forgotten,
refer back to making the cab of the truck.

Edit the body of the truck so that its front face slightly overlaps the cab’s back face.
Check different views to make sure the body lines up correctly with the cab. Accept
your changes when you are done, and then Blast your design. Your truck should now
look like the following:

Truck Cab and Body

8. Using the Primitive Editor to Make Two More Wheel Wells

To make two wheel wells for the body of the truck, repeat the steps used in making the
second wheel well. Name your new shapes well3.s and well4.s. Using multiple views,
move the new shapes into position so that your truck now looks similar to the following:

Lesson 15 Creating a Toy Truck

121

Wireframe Representation of Truck with Wheel Wells

9. Making a Combination of the Truck Body and Wheel Wells

Make a combination of the truck body and the two new wheel wells. Name it body1.c.

The tree for body1.c should say:

body1.c/
u body1.s
- well3.s
- well4.s

10. Making a Region of the Cab and Body

Before adding wheels to the truck, you need to make a region of the cab and body. At the
Command Window prompt, type:

r truck1.r u cab1.c u body1.c<ENTER>

11. Making Wheels for the Truck

Perhaps the best shape for making wheels is the torus. You can create a shape through
the Command Window that has the correct size and placement for your design without
further editing. However, this lesson is designed to give you practice rotating and
translating shapes.

Lesson 15 Creating a Toy Truck

122

To make the first wheel, type at the Command Window prompt:

in wheel1.s tor 0 0 0 .5774 .5774 .5774 .18 .08<ENTER>

This command tells MGED to:

in wheel1.s tor 0 0 0 .5774 .5774 .5774 .18 .08
Create
a shape

Name it
wheel1.s

Make
the

shape
a torus

Make
the

values
of the
vertex
0 0 0

Make the values
for the x, y, and z

of the normal
vector

.5774 .5774 .5774

Make the
value of
the outer
radius .18

Make the
value of

radius 2 (the
tire

thickness)
.08

Change View to Left and then Edit the position of the wheel. To correctly align the
wheel with the truck, you will have to Rotate the tire using the CTRL key and any
mouse button. Scale and Translate the wheel into position as appropriate and check
your alignment from several different views. Accept your changes when finished.

Using the Primitive Editor, make the second, third, and fourth wheels. Move each of
these wheels into position until your truck looks like the following:

Wireframe Truck and Wheels

Lesson 15 Creating a Toy Truck

123

12. Making a Region of the Wheels

Make a region of the four wheels. When you are finished, your data tree for wheel1.r
should say:

wheel1.r/R
u wheel1.s
u wheel2.s
u wheel3.s
u wheel4.s

13. Assigning Material Properties to the Truck Regions

Your truck is composed of two regions: truck1.r and wheel1.r. Use the Combination
Editor and select truck1.r.

In the Combination Editor, the camouflage (camo) shader creates a pseudo-random
tricolor camouflage pattern on the object using a fractal noise pattern. The shader offers
lots of attributes from which to choose. For now, select a Background Color of black (0
0 0) and make Color #1 green (0 134 0), and Color #2 rust brown (164 96 38). To make
the pattern design proportional to the truck, select a Noise Size of .25 and then Apply the
selections. The Combination Editor window for the camo shader should look like this:

Camo Shader

Lesson 15 Creating a Toy Truck

124

Apply a black color and plastic shader to the wheels (wheel1.r) and click on OK. Then
raytrace your design.

14. Using the On-Screen Help Option

You have probably noticed that many of the MGED menus offer a wide variety of
options from which to choose. With so many choices available, it is easy to forget what a
particular selection does. To help users quickly access basic information about the
various MGED options, the program offers a context-sensitive, on-screen help feature.

The on-screen help can be accessed from any menu or pop-up window by placing the
mouse cursor over the name of any option in the menu or window and clicking the right
mouse button. The only place this feature doesn’t work is in the geometry portion of the
Graphics Window, where the design is drawn.

15. The Stacker Option

In previous lessons, you applied color and a shader to an object to make it appear
realistic. Sometimes, however, you will need to apply two or three shaders to an object
to get the design you want.

MGED offers three categories of shaders: paint, plastic, and light. Any combination of
these three types of shaders can be applied to the same object using the stacker option of
the shader menu.

There are three plastic shaders: glass, mirror, and plastic. A plastic shader is used to
give the perception of space. It does this by making the object’s surface shiny so that it
reflects light. A plastic shader is normally applied last in the stacker process.

The paint shaders are used to apply pigment and texture to the surface of an object. Color
is pigment, and texture is the three-dimensional quality of the surface material (such as
stucco paint).

Pigment shaders include camo, texture (color), texture (black/white), fake star, cloud,
checker, test map, and projection. Texture shaders include bump map, fbm bump, and tur
bump. Paint shaders are normally applied first in the stacking process and are used in
combination with the plastic shader.

The light shader is used to produce illumination in the scene. This helps produce realism
in the final image. The light shader is technically complex and is not discussed in this
tutorial.

The camo shader involves applying pigments, in a random pattern, to the surface of an
object. The camo shader doesn’t indicate the three-dimensional nature of an object. If

Lesson 15 Creating a Toy Truck

125

you want your design to show depth, you will need to stack the camo shader and the
plastic shader.

16. Using the Stacker Option

To use the stacker option, open the Combination Editor and select truck1.r. Click on the
button to the right of the Shader entry box and then select stack from the drop-down
menu. A button with the words Add Shader will appear under the text box. Click on the
button and then select camouflage. Set the Background Color to black (0 0 0), Color
#1 to green (0 134 0), and Color #2 to rust brown (164 96 38). Make the Noise Size .25.
Click on Add Shader once again and select plastic.

At this point, your Combination Editor window may have gone off the bottom of the
screen. If this happens, reduce the size of the window as much as you can and then drag
it up to the top of the screen. The buttons at the bottom of the box should now appear,
and you can Apply your selections.

Caution: When using the stacker option, you need to keep track of the
number of characters and spaces in the shader text box. MGED versions
prior to release 6.0 will only recognize 64 characters/spaces, so be careful
stacking shaders with complex attributes.

17. Making a Combination of the Truck Regions

To make a combination of the two truck regions, type at the Command Window prompt:

comb truck1.c u truck1.r u wheel1.r<ENTER>
B truck1.c<ENTER>

Your data tree for truck1.c should read:

truck1.c/
u truck1.r/R

u cab1.c/
u cab1.s
- caboff1.s
- well1.s
- well2.s

u body1.c
u body1.s
- well3.s
- well4.s

u wheel1.r/R
u wheel1.s
u wheel2.s

Lesson 15 Creating a Toy Truck

126

u wheel3.s
u wheel4.s

18. Raytracing the Truck

The last step in creating your truck is to raytrace your design. When the raytracer has
finished, notice that the top and one side of the truck are very dark. This is because there
is very little light falling on them. Because we have not specified any light sources for
our scene, MGED provides us with a set of default lights. These defaults consist of a dim
light at the location of the viewer and a brighter one located to the left and below the
viewer. Since the primary light is not really shining on one side of the truck, it is dark.

There is a special adjustment we can make to improve the overall brightness of the scene.
We can adjust the amount of ambient light, which is light that does not come from a
particular light source but is a measure of the light generally present in the scene. To
adjust the amount of ambient light, click on the Advanced Settings button in the
Raytrace Control Panel. Next to Other Options, type -A .9 and click Dismiss. Now
when you raytrace, you will get a much lighter image.

Truck with Default Lighting Truck with Added Ambient Light

Lesson 15 Creating a Toy Truck

127

Review

In this lesson, you:

� Created a toy truck from three shapes.
� Made copies of shapes using the Primitive Editor.
� Made combinations and regions of a more complex object.
� Checked the data tree for accuracy.
� Listed contents of the database.
� Assigned material properties using the Combination Editor.
� Identified the difference between OK, Accept, Apply, Reset, Cancel, and Dismiss.
� Identified the on-screen help option.
� Identified the stacker option.
� Experimented with the attributes of the camo shader.

Lesson 15 Creating a Toy Truck

128

Intentionally Left Blank

Lesson 16 Learning Modeling Techniques and Structures

129

Lesson 16: Learning Modeling Techniques and Structures

In this lesson, you will be:

� Making the shapes of the walkie-talkie radio into regions.
� Gathering the regions into an assembly combination.
� Assigning material properties to the regions.
� Adding internal components to the radio.
� Creating specialty models of the radio.
� Redefining the structure of the radio.

In Lesson 2, we made the basic shapes of a walkie-talkie radio to gain experience in
viewing objects. Now that we have successfully modeled a few simple objects, let’s
return to the radio to make it more realistic and, in so doing, discuss logical techniques
and structures in modeling. When finished, our radio should look as follows:

Walkie-Talkie Radio

1. Making the Shapes into Regions

Open the database radio.g that you created in Lesson 2. In the Command Window, use
the ls command to list all the contents of your radio. It should read as follows:

Lesson 16 Learning Modeling Techniques and Structures

130

ant.s btn.s knob.s
body.s btn2.s spkr.s

Now what does this list really contain? Parts to a model radio? Not really. What the list
actually comprises is just a collection of shapes (which we have hinted at by using a .s
suffix) that (1) do not have material properties, and therefore (2) do not occupy space.

Remember, in MGED no shape truly becomes an object until it is included
in a region, which, by definition, is an object or collection of objects that
has a common material type.

So our first order of business is to identify the major parts of the radio so we can properly
define the regions. So far, our choices are fairly simple. The radio basically consists of
(1) a body, which houses the speaker and all of the internal parts; (2) an antenna; (3) a
volume control knob, and (4) a talk button. These should be our four regions.

Most of these shapes were fairly straightforward to create, with each item consisting of
just one or two primitive shapes. However, if we think of the radio as a real-world
object, the body of the radio is actually more complex than just a solid box with a few
shapes glued to its surface. (Remember that all objects are solid unless constructed to be
otherwise.) Therefore, let’s start with the main component of the radio—the body.

The Body of the Radio

If we think about it, the body of a radio is actually a hollow case. So, the first thing we
need to do is hollow out the case’s interior to make room for internal components. To do
this, we can use the inside command to create a shape, which we’ll call cavity.s:

inside body.s cavity.s 1 1 1 1 1 1<ENTER>

Now, we’ll make a region called case.r and define it as what’s left of body.s after
cavity.s has been subtracted out. The command should look like this:

r case.r u body.s – cavity.s<ENTER>

Remember that the inside command was originally created to hollow out
objects such as gas tanks and boxes; however, it can also be used to create
any new cutaway shape that has some relationship to a pre-existing shape.

Lesson 16 Learning Modeling Techniques and Structures

131

With our case now made, we can proceed to cut several holes through this structure to
accommodate the antenna, the volume control knob, and the talk button. To do this, we
must subtract the three shapes from the case as follows:

r case.r – ant.s – knob.s – btn.s<ENTER>

Finally, we need to “glue” the lip around the speaker to the case’s front face by typing

r case.r u spkr.s<ENTER>

Our body is now finished. Note that an experienced modeler would probably have
combined the preceding three Boolean functions into a single command as follows:

r case.r u body.s – cavity.s – ant.s – knob.s – btn.s u
spkr.s<ENTER>

If we were to raytrace case.r at this point, we would see the following:

Radio with Component Cutouts and Default Material Properties

Note the hole for the antenna in the top of the case and the hole for the talk button on the
side of the case. We will now fill these holes with their respective components.

Lesson 16 Learning Modeling Techniques and Structures

132

Precedence Review

The order in which these primitives were unioned and subtracted is
important. We unioned in spkr. s last so that all the subtractions would
apply to body.s. The rules of precedence for Boolean operators indicate
that subtraction and intersection have a higher priority than union (meaning
that they are performed first).

Although the following operation is not in proper MGED syntax, it does
illustrate the implied parentheses that precede and follow the union
operators in our last command:

r case.r u (body.s – cavity.s – ant.s – knob.s –
btn.s) u (spkr.s) <ENTER>

Optionally, we could’ve unioned in spkr.s before body.s as follows:

r case.r u spkr.s u body.s – cavity.s – ant.s –
knob.s – btn.s<ENTER>

Let’s consider, however, what would have happened if we had done the
following:

r case.r u body.s u spkr.s – cavity.s – ant.s –
knob.s – btn.s<ENTER>

In this last case, operator precedence would have caused the program to
subtract cavity.s, ant.s, knob.s, and btn.s from spkr.s. Nothing would
have been subtracted from body.s. Therefore, the holes in the case would
not have been created.

Subtracting cavity.s, ant.s, knobs, and btn.s from spkr.s would have
produced no apparent effect because they do not overlap the volume of
spkr.s.

The Other Regions

Making the talk button is simpler than making the case. The button consists of the union
of two primitive shapes. To make them into a region, type

r button.r u btn.s u btn2.s<ENTER>

The volume knob and antenna are even simpler. They are single primitive shapes that
can be made into regions by typing

Lesson 16 Learning Modeling Techniques and Structures

133

r knob.r u knob.s<ENTER>
r ant.r u ant.s<ENTER>

2. Gathering the Regions into an Assembly Combination

Now let’s take all of the regions we have made so far and gather them into an assembly
(or group) combination called radio.c so that we can keep all of these parts together.
There are several ways to do this. One way would be to use a similar method to the one
we used to make the regions:

comb radio.c u case.r u button.r u knob.r u ant.r<ENTER>

A shortcut, however, would be to use the g (group) command as follows:

g radio.c case.r button.r knob.r ant.r<ENTER>

Unlike the comb command, the g command assumes that all of the items specified will
be unioned together, and so no Boolean operators need to be specified.

A final improvement would include using the database name wildcard *.r to quickly
and easily specify all of the regions in the database:

g radio.c *.r<ENTER>

If we now tree radio.c, we should get the following output in the Command Window.

radio.c/
u case.r/R

u body.s
- cavity.s
- ant.s
- knob.s
- btn.s
u spkr.s

u button.r/R
u btn.s
u btn2.s

u knob.r/R
u knob.s

u ant.r/R
u ant.s

Lesson 16 Learning Modeling Techniques and Structures

134

3. Assigning Material Properties to the Regions

Thus far, the objects we have created have no material properties other than the gray
plastic that MGED assigns by default to any object without assigned material values.
Now let’s improve our design by assigning other material properties to the components.

We’ll give the antenna a realistic look by opening the Combination Editor, choosing
ant.r from the drop-down Name menu, selecting mirror from the drop-down Shader
menu, and clicking on Apply.

We’ll let the other components remain with the default plastic, but we’ll assign them
different colors. With the Combination Editor still open, select case.r from the drop-
down Name menu, select the magenta option from the drop-down Color menu, and then
click Apply. Use the same method to assign the volume control knob (knob.r) a blue
color. For the talk button (button.r), let’s keep it gray by leaving the default values in
place. The design should appear similar to the following when raytraced in Underlay
mode:

Radio with Material Properties Assigned

As we look at our radio now, we can see that the antenna looks a little bit like a straw. In
reality, it should have a small cap on the end so that we can raise and lower the antenna.
We can approximate this shape by creating an ellipsoid (which we’ll call ant2.s) and
unioning it in with the rest of the antenna as follows:

in ant2.s ell1 2 2 94 0 0 1 3<ENTER>
r ant.r u ant2.s<ENTER>

Lesson 16 Learning Modeling Techniques and Structures

135

4. Adding Internal Components

Our radio is looking more and more realistic; however, it is still just a hollow shell. Let’s
further improve it by making a circuit board to go inside the case. To do this, type:

in board.s rpp 3 4 1 31 1 47<ENTER>
r board.r u board.s<ENTER>

Let’s give the board a green semi-shiny color. The easiest way to do this is via the
Combination Editor, but this time let’s use the Command Line approach. Type:

mater board.r “plastic sh=4” 0 198 0 1<ENTER>

Diagrammed, this command says to:

mater board.r “plastic sh=4” 0 198 0 1
Assign material

properties to
the region called

board.r.
Apply the plastic shader

with a shininess of 4.
Give it a

green color
Inherit color
material type

Finally, we’ll include the board with the rest of the components in radio.c as follows:

g radio.c board.r<ENTER>

Our radio should now look like the following:

Wireframe Radio with Circuit Board Added

Lesson 16 Learning Modeling Techniques and Structures

136

In addition, the tree for radio.c should now look as follows:

radio.c/
u case.r/R

u body.s
- cavity.s
- ant.s
- knob.s
- btn.s
u spkr.s

u button.r/R
u btn.s
u btn2.s

u knob.r/R
u knob.s

u ant.r/R
u ant.s
u ant2.s

u board.r/R
u board.s

5. Making Specialty Models of the Radio

Now, what would happen to the circuit board if we were to raytrace the radio at this
point? It would disappear because it lies within the case. So how can we make the
circuit board visible outside of the case?

There are two common ways to do this: a transparent view and a cutaway view. Each
method has its advantages and disadvantages. With the transparent view, the Boolean
operations remain unchanged, but some of the material properties of the “outside shell”
are altered to better view interior parts of the model. With the cutaway view, the material
properties remain unchanged, but some of the Boolean operations are altered to remove
parts of the model that are obstructing our view of other parts. We will try both ways to
view the inside of our radio.

Different Approaches to Creating Specialty Models

An important point to note here is that the transparent and cutaway views are specialty
models. They are similar in nature to items a manufacturer might make for special
purposes. For example, an automobile manufacturer makes cars for everyday use, but
also makes modified versions for display at certain events. The body panels might be
replaced with a transparent material or be partially cut away to reveal interior
components.

Lesson 16 Learning Modeling Techniques and Structures

137

Good modeling practice follows the same pattern. The actual model of an item should
not have to be changed in order to create a specialty view of it. Instead, a modified
version of the item should be created. Thus, the modeler will not have to worry about
remembering to return the model to the original condition after its special-purpose use,
and the modeler can also retain the “display model” for future use.

There are two common approaches to making these specialty models: First, the modeler
can copy the original and replace components with modified versions. Second, the
modeler can create new, unique parts from scratch and construct the modified item. The
method chosen is a matter of personal choice and is usually determined by the extent of
the modifications being done and the complexity of the original object.

Transparent View

Making a specialty radio with a transparent case would probably be the easiest way to
view the circuit board inside. All we have to do is make a copy of our present radio case
and modify its material properties. We’ll call the specialty case case_clear.r. Type

cp case.r case_clear.r<ENTER>

We can now use the Combination Editor to set the material properties on this case
without affecting the “master” design of the radio. When this has been done, we can
combine this modified case with the other unchanged radio components and group them
as a new specialty radio named radio_clear.c.

To set the material properties of case_clear.r, choose plastic from the drop-down menu
to the right of the Shader entry box in the Combination Editor. (Although this is the
shader that is used by default, we want to explicitly select it in order to change one of its
values.) Now change the Transparency of the case to a value of .8. Apply the change
and close the Combination Editor.

Finally, create the specialty radio combination by typing:

g radio_clear.c case_clear.r button.r knob.r ant.r
board.r<ENTER>

and then Blast the display with

B radio_clear.c<ENTER>

Now raytrace your design to view the resulting effect. The new transparent case should
appear similar to the following:

Lesson 16 Learning Modeling Techniques and Structures

138

Transparent View of the Radio

As shown in the following tree diagram, the structure of this specialty radio_clear.c is
not much different than that of the regular radio.c. The only difference is that case.c has
been replaced with case_clear.c.

radio_clear.c/
u case_clear.r/R

u body.s
- cavity.s
- ant.s
- knob.s
- btn.s
u spkr.s

u button.r/R
u btn.s
u btn2.s

u knob.r/R
u knob.s

u ant.r/R
u ant.s
u ant2.s

u board.r/R
u board.s

Lesson 16 Learning Modeling Techniques and Structures

139

Notice in the preceding figure that the color chosen for the transparent case
does influence the appearance of the internal objects. Although we made
the circuit board green, the filter effect of the transparent magenta case—
which allows no green light to enter or exit the case—causes the board to
appear to be dark purple. This is okay in our situation. However, if
accuracy in color is important in a model, the modeler should remember to
select a neutral color (such as white or light gray) for the transparent
object.

Cutaway View

Another way we can make the interior components of the radio visible is to create a
cutaway view. Although it is a little more complex to make than the transparent view
was, the cutaway view offers a particularly interesting way to view geometry.

There are several ways to make the cutaway view. Probably the easiest way is to use the
“chainsaw” method to cut off part of the radio and reveal what is inside.

To do this, create an arb8 called cutaway.s, which will be used to cut off the front corner
of the radio. Because this is a cutting shape (i.e., it is simply used to erase a portion of
another shape and will not actually be viewed), the dimensions of the arb8 are not
critical. The only concern is that cutaway.s be as tall as the case so that it completely
removes a corner from it.

Use the Shift Grips and multiple views (especially the Top view) to align cutaway.s so
that it angles diagonally across the top of the radio (as shown in the following wireframe
representation). When you’ve aligned the shape the way you want it, create the following
radio_cutaway.c combination that unions in radio.c and subtracts out the shape
(cutaway.s) that is covering what you want to see (board.r):

comb radio_cutaway.c u radio.c – cutaway.s<ENTER>

Lesson 16 Learning Modeling Techniques and Structures

140

Multipane View of Cutting Primitive

Blast the radio_cutaway.c combination onto the display and raytrace. Depending on
how your arb8 intersected the radio, the cutaway should look similar to the following:

Cutaway View of Radio with Circuit Board Cut Off

Lesson 16 Learning Modeling Techniques and Structures

141

Notice in the preceding figures that cutaway.s removes everything it overlaps (including
part of the circuit board). This is okay if we just want to see inside the case. However, if
we want to see all of the circuit board and any other component overlapped by cutaway.s
(e.g., button.r), we would have to adjust our Boolean operations a little so that the
cutaway is subtracted only from our case.

To do this, we basically have two options: (1) we could move cutaway.s in the structure
so that it is subtracted from only case.r, or (2) we could move cutaway.s in the structure
so that it is subtracted from both body.s and spkr.s, the two components that make up
case.r. While both of these options would produce the same effect, the first method
requires just one subtraction, whereas the second method potentially provides more
control by having the user select the individual components that will subtract out the
cutting shape.

Take a minute and compare the following trees for the cutaways we have discussed so
far. Especially note the position of cutaway.s in the different structures. Also, note that
when cutaway.s was subtracted from a particular region or combination, the name of that
region or combination was changed. The reasoning behind this goes back to our original
discussion of specialty models. Remember that our purpose is to create a new special-
purpose model, not change the existing model. So, we must change the name of any
region or combination that contains any modified components or structures. If we don’t,
the master model will also be changed.

Lesson 16 Learning Modeling Techniques and Structures

142

radio_cutaway.c/
u radio.c/

u case.r/R
u body.s
- cavity.s
- ant.s
- knob.s
- btn.s
u spkr.s

u button.r/R
u btn.s
u btn2.s

u knob.r/R
u knob.s
u ant.r/R

u ant.s
u ant2.s

u board.r/R
u board.s

- cutaway.s

Cutaway Subtracted from Entire Radio

radio_cutaway.c/
u radio_casecut.c/

u case.r/R
u body.s
- cavity.s
- ant.s
- knob.s
- btn.s
u spkr.s

- cutaway.s
u button.r/R

u btn.s
u btn2.s

u knob.r/R
u knob.s
u ant.r/R

u ant.s
u ant2.s

u board.r/R
u board.s

radio_cutaway.c/
u radio_compcut.c/

u case_compcut.r/R
u body.s

- cutaway.s
- cavity.s
- ant.s
- knob.s
- btn.s
u spkr.s

- cutaway.s
u button.r/R

u btn.s
u btn2.s

u knob.r/R
u knob.s
u ant.r/R

u ant.s
u ant2.s

u board.r/R
u board.s

Cutaway Subtracted from case.r Cutaway Subtracted from body.s and spkr.s

Lesson 16 Learning Modeling Techniques and Structures

143

6. Redefining the Structure of the Radio

As shapes are added in a design, the modeler often finds that the structure or association
of components needs to change. Thus, we should pause at this point and consider how
our radio is structured. While there are many ways to structure a model, two common
modeling categories are location and functionality. For our radio, we have so far grouped
everything together under the general category of Radio, as shown in the following:

Radio

antenna button case knob board

Current Radio Structure

If we wanted to categorize our components according to location, however, we might
structure the model as follows:

Radio

External Components Internal Components

antenna button case knob board

Location-Based Structure of Radio

If we wanted to define our components according to functionality, we might structure the
model another way. For instance, to repair an actual radio, we would open the case, take
out the circuit board, fix it, and put it back in. When taking out the board, however, the
knob and button would probably be attached to it in some way, and so they too would
need to come out. Accordingly, our structure should be changed as shown in the
following diagram to associate the knob and button with the circuit board.

Radio

antenna case Electronics

button board knob

Function-Based Structure of Radio

Lesson 16 Learning Modeling Techniques and Structures

144

To accomplish this restructuring according to functionality, create an assembly called
electronics.c to hold these components together. Type:

g electronics.c board.r knob.r button.r<ENTER>

Of course, we now need to remove board.r, knob.r, and button.r from the radio.c
assembly so that when electronics.c is added to the radio.c assembly, we won’t have the
knob and button included twice in the model. To do this, use the rm (remove) command:

rm radio.c board.r knob.r button.r<ENTER>

and then union in the electronics assembly:

g radio.c electronics.c<ENTER>

Now the tree for radio.c should appear as follows:

radio.c/
u case.r/R

u body.s
- cavity.s
- ant.s
- knob.s
- btn.s
u spkr.s

u ant.r/R
u ant.s
u ant2.s

u electronics.c/
u board.r/R

u board.s
u knob.r/R

u knob.s
u button.r/R

u btn.s
u btn2.s

Now let’s remake our cutaway view. This time, let’s do what we discussed earlier and
make the cutaway remove material from only the case, showing all the other components.

First, we need to get rid of the old radio_cutaway.c, which was based on our previous
structure. To do this, type

kill radio_cutaway.c<ENTER>

Lesson 16 Learning Modeling Techniques and Structures

145

and then remake the combination by typing

comb radio_cutaway.c u case.r – cutaway.s u electronics.c u
ant.r<ENTER>

Now when we Blast the display and raytrace radio_cutaway.c, we should see the
following:

View of Radio with Just the Case Cut Away

Review

In this lesson, you:

� Made the shapes of the walkie-talkie radio into regions.
� Gathered the regions into an assembly combination.
� Assigned material properties to the regions.
� Added internal components to the radio.
� Created specialty models of the radio.
� Redefined the structure of the radio.

Lesson 16 Learning Modeling Techniques and Structures

146

Intentionally Left Blank

Appendix A MGED Commands

147

Appendix A: MGED Commands

Appendix A MGED Commands

148

Intentionally Left Blank

Appendix A MGED Commands

149

MGED User Commands
% ptarb ? ?devel ?lib
B E M Z adc
ae analyze animmate apropos aproposdevel
aproposlib arb arced area arot
attach attr autoview bev bot_condense
bot_decimate bot_face_fuse bot_face_sort bot_face_fuse bot_vertex_fuse
build_region c cat center color
comb comb_color copyeval copymat cp
cpi d dall db dbbinary
db_glob dbconcat debugbu debugdir debuglib
debugmem debugnmg decompose delay dm
draw dup e eac echo
edcodes edcolor edcomb edgedir edmater
eqn em erase erase_all ev
exit expand export_body extrude eye_pt
e_muves facedef facetize find fracture
g garbage_collect gui help helpdevel
helplib hide history i idents
ill in inside item joint
journal keep keypoint kill killall
killtree knob l labelvert listeval
loadtk lookat ls l_muves make
make_bb mater matpick memprint mirface
mirror mrot mv mvall nirt
nmg_collapse nmg_simplify oed opendb orientation
orot oscale overlay p pathlist
paths permute pl plot polybinout
pov prcolor prefix press preview
prj_add ps push putmat q
qorot qray query_ray quit qvrot
r rcodes rcc-blend rcc-cap rcc-tgc
rcc-tor read_muves red redraw_vlist refresh
regdebug regdef regions release rfarb
rm rmater rmats rot rotobj
rpp-arch rpp-cap rrt rt rtcheck
savekey saveview sca sed setview
shader shells showmats size solids
sph-part status summary sv sync
t ted title tol tops
tor-rcc tra track translate tree
t_muves units vars vdraw view
viewsize vnirt vquery_ray vrmgr vrot
wcodes whatid which_shader whichair whichid
who wmater x xpush zoom

Appendix A MGED Commands

150

%

Start a “/bin/sh” shell process for the user. The mged prompt will be replaced by a
system prompt for the shell, and the user may perform any legal shell commands. The
mged process waits for the shell process to finish, which occurs when the user exits
the shell. This only works in a command window associated with a tty (i.e., the
window used to start mged in classic mode).

Examples:

mged> %
-- Start a new shell process.

$ ls -al
-- Issue any shell commands.

$ exit
-- Exit the shell.

mged>
-- Continue editing in mged.

3ptarb [arb_name x1 y1 z1 x2 y2 z2 x3 y3 z3 x|y|z coord1 coord2 thickness]

Build an ARB8 shape by extruding a quadrilateral through a given thickness. The
arguments may be provided on the command line; if they are not, they will be
prompted for. The x1, y1, and z1 are the coordinates of one corner of the
quadrilateral. x2, y2, z2, and x3, y3, z3 are the coordinates of two other corners. Only
two coordinates of the fourth point are specified, and the code calculates the third
coordinate to ensure all four points are coplanar. The x|y|z parameter indicates which
coordinate of the fourth point will be calculated by the code. The coord1 and coord2
parameters supply the other two coordinates. The direction of extrusion for the
quadrilateral is determined from the order of the four resulting points by the right-
hand rule; the quadrilateral is extruded toward a viewer for whom the points appear in
counter-clockwise order.

Examples:

mged> 3ptarb
-- Start the 3ptarb command.

Enter name for this arb: thing
-- The new ARB8 will be named thing.

Appendix A MGED Commands

151

Enter X, Y, Z for point 1: 0 0 0
-- Point one is at the origin.

Enter X, Y, Z for point 2: 1 0 0
-- Point two is at (1, 0, 0).

Enter X, Y, Z for point 3: 1 1 0
-- Point three is at (1, 1, 0).

Enter coordinate to solve for (x, y, or z): z
-- The code will calculate the z coordinate of the fourth point.

Enter the X, Y coordinate values: 0 1
-- The x and y coordinates of the fourth point are 0 and 1.

Enter thickness for this arb: 3
-- The new ARB8 will be 3 units thick.

mged> 3ptarb thing 0 0 0 1 0 0 1 1 0 z 0 1 3
-- Same as above example, but with all arguments supplied on the command line.

?

Provide a list of available mged commands. The ?devel, ?lib, help, helpdevel, and
helplib commands provide additional information on available commands.

Examples:

mged> ?
-- Get a list of available commands.

?devel

Provide a list of available mged developer commands. The ?, ?lib, help, helpdevel,
and helplib commands provide additional information on available commands.

Examples:

mged> ?devel
-- Get a list of available developer commands.

?lib

Provide a list of available BRL-CAD library interface commands. The ?, ?devel, ?lib,
help, helpdevel, and helplib commands provide additional information on available
commands.

Appendix A MGED Commands

152

Examples:

mged> ?lib
-- Get a list of available BRL-CAD library interface commands.

B [-A -o -s C#/#/#] <objects | attribute name/value pairs>

Clear the mged display of any currently displayed objects, then display the list of
objects provided in the parameter list. Equivalent to the Z command followed by the
command draw <objects>. The -C option provides the user a way to specify a color
that overrides all other color specifications including combination colors and region
id-based colors. The -A and -o options allow the user to select objects by attribute.
The -s option specifies that subtracted and intersected objects should be drawn with
solid lines rather than dot-dash lines. See the draw command for a detailed
description of the options.

Examples:

mged> B some_object
-- Clear the display, then display the object named some_object.

mged> B -A -o Comment {First comment} Comment {Second comment}
-- Clear the display, then draw objects that have a “Comment” attribute with a value
of either “First comment” or “Second comment.”

E [-s] <objects>

Display objects in an evaluated form. All the Boolean operations indicated in each
object in objects will be performed, and a resulting faceted approximation of the
actual objects will be displayed. Note that this is usually much slower than using the
usual draw command. The -s option provides a more accurate, but slower,
approximation.

Examples:

mged> E some_object
-- Display a faceted approximation of some_object.

M 1|0 xpos ypos

Send an mged mouse (i.e., defaults to a middle mouse button) event. The first
argument indicates whether the event should be a button press (1) or release (0). The
xpos and ypos arguments specify the mouse position in mged screen coordinates
between -2047 and +2047. With the default bindings, an mged mouse event while in
the viewing mode moves the view so that the point currently at screen position (xpos,

Appendix A MGED Commands

153

ypos) is repositioned to the center of the mged display (compare to the center
command). The M command may also be used in other editing modes to simulate an
mged mouse event.

Examples:

mged> M 1 100 100
-- Translate the point at screen coordinates (100, 100) to the center of the mged
display.

Z

Zap (i.e., clear) the mged display.

Examples:

mged> Z
-- Clear the mged display.

adc [-i] [subcommand]

This command controls the angle/distance cursor. The adc command with no
arguments toggles the display of the angle/distance cursor (ADC). The -i option, if
specified, causes the given value(s) to be treated as increments. Note that the -i
option is ignored when getting values or when used with subcommands where this
option makes no sense. You can also control the position, angles, and radius of the
ADC using a knob or the knob command. This command accepts the following
subcommands:

vars

Returns a list of all ADC variables and their values (i.e., var = val).

draw [0|1]

Set or get the draw parameter.

a1 [angle]

Set or get angle1 in degrees.

a2 [angle]

Set or get angle2 in degrees.

dst [distance]

Set or get radius (distance) of tick in local units.

Appendix A MGED Commands

154

odst [distance]

Set or get radius (distance) of tick (+-2047).

hv [position]

Set or get position (grid coordinates and local units).

xyz [position]

Set or get position (model coordinates and local units).

x [xpos]

Set or get horizontal position (+-2047).

y [ypos]

Set or get vertical position (+-2047).

dh distance

Add to horizontal position (grid coordinates and local units).

dv distance

Add to vertical position (grid coordinates and local units).

dx distance

Add to x position (model coordinates and local units).

dy distance

Add to y position (model coordinates and local units).

dz distance

Add to z position (model coordinates and local units).

anchor_pos [0|1]

Anchor ADC to current position in model coordinates.

anchor_a1 [0|1]

Anchor angle1 to go through anchorpoint_a1.

anchor_a2 [0|1]

Anchor angle2 to go through anchorpoint_a2.

anchor_dst [0|1]

Appendix A MGED Commands

155

Anchor tick distance to go through anchorpoint_dst.

anchorpoint_a1 [x y z]

Set or get anchor point for angle1 (model coordinates and local units).

anchorpoint_a2 [x y z]

Set or get anchor point for angle2 (model coordinates and local units).

anchorpoint_dst [x y z]

Set or get anchor point for tick distance (model coordinates and local units).

reset

Reset all values to their defaults.

help

Print the help message.

Examples:

mged> adc
-- Toggle display of the angle/distance cursor

mged> adc a1 37.5
-- Set angle1 to 37.5˚.

mged> adc a1
37.5
-- Get angle1.

mged> adc xyz 100 0 0
-- Move ADC position to (100, 0, 0), model coordinates and local units.

ae [-i] azimuth elevation [twist]

Set the view orientation for the mged display by rotating the eye position about the
center of the viewing cube. The eye position is determined by the supplied azimuth
and elevation angles (degrees). The azimuth angle is measured in the xy plane with
the positive x direction corresponding to an azimuth of 0˚. Positive azimuth angles
are measured counter-clockwise about the positive z axis. Elevation angles are
measured from the xy plane with +90˚ corresponding to the positive z direction and -
90 corresponding to the negative z direction. If an optional twist angle is included,
the view will be rotated about the viewing direction by the specified twist angle. The
-i option results in the angles supplied being interpreted as increments.

Appendix A MGED Commands

156

Examples:

mged> ae -90 90
-- View from top direction.

mged> ae 270 0
-- View from right hand side.

mged> ae 35 25 10
-- View from azimuth 35, elevation 25, with view rotated by 10˚.

mged> ae -i 0 0 5
-- Rotate the current view through 5˚ about the viewing direction.

analyze [arb_name]

The “analyze” command displays the rotation and fallback angles, surface area, and
plane equation for each face of the ARB specified on the command line. The total
surface area and volume and the length of each edge are also displayed. If executed
while editing an ARB, the arb_name may be omitted, and the ARB being edited will
be analyzed.

Examples:

mged> analyze arb_name
-- Analyze the ARB named arb_name.

animmate

The “animmate” command starts the Tcl/Tk-based animation tool. The capabilities
and correct use of this command are too extensive to be described here, but there is a
tutorial available.

apropos keyword

The “apropos” command searches through the one-line usage messages for each
mged command and displays the name of each command where a match is found.

Examples:

mged> apropos region
-- List all commands that contain the word “region” in their one-line usage messages.

Appendix A MGED Commands

157

aproposdevel keyword

The “aproposdevel” command searches through the one-line usage messages for each
mged developer command and displays the name of each command where a match is
found.

Examples:

mged> aproposdevel region
-- List all developer commands that contain the word “region” in their one-line usage
messages.

aproposlib keyword

The “aproposlib” command searches through the one-line usage messages for each
BRL-CAD library interface command and displays the name of each command where
a match is found.

Examples:

mged> aproposlib mat
-- List all commands that contain the word “mat” in their one-line usage messages.

arb arb_name rotation fallback

The “arb” command creates a new ARB shape with the specified arb_name. The
new ARB will be 20 inches by 20 inches and 2 inches thick. The square faces will be
perpendicular to the direction defined by the rotation and fallback angles. This
direction can be determined by interpreting the rotation angle as an azimuth and the
fallback angle as an elevation as in the ae command.

Examples:

mged> arb new_arb 35 25
-- Create new_arb with a rotation angle of 35˚ and a fallback angle of 25˚.

mged> ae 35 25
-- Rotate view to look straight on at square face of new_arb

arced comb/memb anim_command

The objects in a BRL-CAD model are stored as Boolean combinations of primitive
shapes and/or other combinations. These combinations are stored as Boolean trees,

Appendix A MGED Commands

158

with each leaf of the tree including a corresponding transformation matrix. The
“arced” command provides a means for directly editing these matrices. The first
argument to the “arced” command must identify the combination and which
member’s matrix is to be edited. The comb/memb argument indicates that member
memb of combination comb has the matrix to be edited. The remainder of the “arced”
command line consists of an animation command to be applied to that matrix. The
available animation commands are:

� matrix rarc <xlate|rot> matrix elements
-- Replace the members matrix with the given matrix.

� matrix lmul <xlate|ro> matrix elements .
-- Left multiply the members matrix with the given matrix.

� matrix rmul <xlate|rot> matrix elements.
-- Right multiply the members matrix with the given matrix.

Examples:

mged> arced body/head matrix rot 0 0 45
-- Rotate member head (in combination body) about the z axis through a 45˚ angle.
By default, the matrix commands expect a list of 16 matrix elements to define a
matrix. The xlate option may be used along with three translation distances in the x,
y, and z directions (in mm) as a shorthand notation for a matrix that is pure
translation. Similarly, the rot option along with rotation angles (degrees) about the x,
y, and z axes may be used as shorthand for a matrix that is pure rotation.

area [tolerance]

The “area” command calculates an approximate presented area of one region in the
mged display. For this command to work properly, a single BRL-CAD region must be
displayed using the E command. The tolerance is the distance required between two
vertices in order for them to be recognized as distinct vertices. This calculation
considers only the minimum bounding polygon of the region and ignores holes.

Examples:

mged> Z
-- Clear the mged display(s).

mged> E region_1
-- E a single region.

mged> area
-- Calculate the presented area of the enclosing polygon of the region.

Appendix A MGED Commands

159

arot x y z angle

The “arot” command performs a rotation about the specified axis (x y z) using screen
units (-2048 to +2048). The amount of rotation is determined by angle, which is in
degrees. Exactly what is rotated and how it is rotated are dependent on MGED’s state
as well as the state of the display manager. For example, in normal viewing mode,
this command simply rotates the view. However, in primitive edit mode, it rotates the
shape being edited.

Examples:

mged> arot 0 0 1 10
-- Rotate 10˚ about z axis.

attach [-d display_string] [-i init_script] [-n name] [-t is_toplevel] [-W width] [-N height]
[-S square_size] win_type

The “attach” command is used to open a display window. The set of supported
window types includes X and ogl. It should be noted that attach no longer releases
previously attached display windows (i.e., multiple attaches are supported). To
destroy a display window, use the release command.

Examples:

mged> attach ogl
-- Open an ogl display window named .dm_ogl0 (assuming this is the first ogl display
window opened using the default naming scheme).

mged> attach ogl
-- Open a ogl display window named .dm_ogl1.

mged> attach -n myOgl -W 720 -N 486 ogl
-- Open a 720x486 OpenGL display window named myOgl.

mged> attach -n myX -d remote_host:0 -i myInit X
-- Open an X display window named myX on remote_host that is initialized by
myInit.
-- myInit might contain user specified bindings like those found in the default
bindings.

mged> toplevel .t
-- Create a toplevel window named .t.

mged> attach -t 0 -S 800 -n .t.ogl ogl

Appendix A MGED Commands

160

-- Open a 800x800 OpenGl display window named .t.ogl that is not a top-level
window.

mged> button .t.dismiss -text Dismiss -command "release .t.ogl; destroy .t"
-- Create a button to dismiss the display manager etc.

mged> pack .t.ogl -expand 1 -fill both
-- Pack the display manager inside .t.

mged> pack .t.dismiss
-- Pack the Dismiss button inside .t.

mged> attach
-- List the help message that includes the valid display types.

attr get|set|rm|append|show object_name [arguments]
The “attr” command is used to create, change, retrieve, or view attributes of database
objects. The arguments for “set” and “append” subcommands are attribute
name/value pairs. The arguments for “get,” “rm,” and “show” subcommands are
attribute names. The “set” subcommand sets the specified attributes for the object.
The “append” subcommand appends the provided value to an existing attribute, or
creates a new attribute if it does not already exist. The “get” subcommand retrieves
and displays the specified attributes. The “rm” subcommand deletes the specified
attributes. The “show” subcommand does a “get” and displays the results in a user
readable format. Note that the attribute names may not contain embedded white
space, and if attribute values contain embedded white space, they must be surrounded
by “{}” or double quotes.

Examples:

mged> attr set region_1 comment {This is a comment for region_1}
-- Assign an attribute named “comment” to region_1, its value is “This is a
comment for region_1”

mged> attr show region_1 comment
-- List all the attributes for region_1

autoview
The “autoview” command resets the view size and the view center such that all
displayed objects are within the view.

Examples:

Appendix A MGED Commands

161

mged> autoview
-- Adjust the view to see everything displayed.

bev [-t] [-P#] new_obj Boolean_formula

The “bev” command performs the operations indicated in the Boolean_formula and
stores the result in new_obj. The new_obj will be stored as an NMG shape (it may be
converted to a polysolid by using the nmg_simplify command). If the -t option is
specified, then the resulting object will consist entirely of triangular facets. The
default is to allow facets of any complexity, including holes. The -P option specifies
the number of CPUs to use for the calculation (however, this is currently ignored).
Only simple Boolean_formulas are allowed. No parentheses are allowed and the
operations are performed from left to right with no precedence. More complex
expressions must be expressed as BRL-CAD objects using the r, g, or c commands
and evaluated using the facetize or ev commands.

Examples:

mged> bev -t triangulated_lens sphere1 + sphere2
-- Create a triangulated object by intersecting objects sphere1 and sphere2.

bot_condense new_bot_primitive old_bot_primitive
The “bot_condense” command is used to eliminate unused vertices from a BOT
primitive. It returns the number of vertices eliminated.

Examples:

mged> bot_condense bot1_condensed bot1_original
-- Eliminate any unused vertices from the primitive named bot1_original and store
the result in the new BOT primitive named bot1_condensed.

bot_decimate –c maximum_chord_error –n maximum_normal_error –e
minimum_edge_length new_bot_primitive old_bot_primitive

The “bot_decimate” command reduces the number of triangles in the
old_bot_primitive and saves the results to the new_bot_primitive. The reduction is
accomplished through an edge decimation algorithm. Only changes that do not
violate the specified constraints are performed. The maximum_chord_error
parameter specifies the maximum distance allowed between the original surface and
the surface of the new BOT primitive in the current editing units. The
maximum_normal_error specifies the maximum change in surface normal (degrees)
between the old and new surfaces. The minimum_edge_length specifies the length of
the longest edge that will be decimated. At least one constraint must be supplied. If
more than one constraint is specified, then only operations that satisfy all the

Appendix A MGED Commands

162

constraints are performed.

Examples:

mged> bot_decimate -c 0.5 -n 10.0 bot.new abot
-- Create a new BOT primitive named bot.new by reducing the number of triangles
in abot while keeping the resulting surface within 0.5 units of the surface of abot and
keeping the surface normals within 10 degrees.

Note that the constraints specified only relate the output BOT primitive to the input
BOT primitive for a single invocation of the command. Repeated application of this
command on its own BOT output will result in a final BOT primitive that has
unknown relationships to the original BOT primitive. For example:

mged> bot_decimate -c 10.0 bot_b bot_a
mged> bot_decimate -c 10.0 bot_c bot_b
-- This sequence of commands will produce primitive “bot_c” with up to 20.0 units
of chord error between “bot_a” and “bot_c”.

mged> bot_decimate -c 10.0 bot_b bot_a
mged> bot_decimate -n 5.0 bot_c bot_b
-- This sequence of commands will produce primitive “bot_c” with no guaranteed
relationships to “bot_a”.

bot_face_fuse new_bot_primitive old_bot_primitive
The “bot_face_fuse” command is used to eliminate duplicate faces from a BOT solid.
It returns the number of faces eliminated.

Examples:

mged> bot_face_fuse bot1_fused bot1_original
-- Eliminate any duplicate faces from the primitive named bot1_original and store the
result in the new BOT primitive named bot1_fused.

bot_face_sort triangles_per_piece bot_primitive1 [bot_primitive2 bot_primitive3 ...]
The “bot_face_sort” command is used to sort the list of triangles that constitutes the
BOT primitive to optimize it for raytracing with the specified number of triangles per
piece. Most BRL-CAD primitives are treated as a single object when a model is
being prepared for raytracing, but BOT primitives are normally broken into “pieces”
to improve performance. The raytracer normally uses four triangles per piece.

Examples:

Appendix A MGED Commands

163

mged> bot_face_sort 4 bot1 bot2
-- Sort the faces of bot1 and bot2 to optimize them for raytracing with four triangles
per piece.

bot_vertex_fuse new_bot_solid old_bot_primitive
The “bot_vertex_fuse” command is used to eliminate duplicate vertices from a BOT
solid. It returns the number of vertices eliminated. No tolerance is used, so the
vertices must match exactly to be considered duplicates.

Examples:

mged> bot_vertex_fuse bot1_fused bot1_original
-- Eliminate any duplicate vertices from the primitive named bot1_original and store
the result in the new BOT primitive named bot1_fused.

build_region [-a region_num] tag start_num end_num
The “build_region” command builds a region from existing solids that have
specifically formated names based on the provided tags and numbers. The created
region will be named “tag.rx”, where “x” is the first number (starting from 1) that
produces an unused region name. If the -a option is used, then the specified
“region_num” will be used for “x.” If that region already exists, this operation will
append to it. If that region does not exist, a new one will be created. The solids that
will be involved in this operation are those with names of the form “tag.s#” or
“tag.s#o@”, where “#” is a number between start_num and end_num inclusive, “o” is
either “u”, “-”, or “+”, and “@” is any number. The operators and numbers coded
into the solid names are used to build the region.

Examples:

mged> build_region abc 1 2
-- Creates a region named “abc.r1” consisting of:
u abc.s1
u abc.s2
+ abc.s2+1
- abc.s2-1
provided that the above shapes already exist in the database.

c [-c|r] combination_name [Boolean_expression]

The “c” command creates a BRL-CAD combination with the name
combination_name. The -r option indicates that the combination is a BRL-CAD

Appendix A MGED Commands

164

region. The -c option is the default and indicates that the combination is not a region.
The Boolean_expression allows parentheses. Where no order is specified,
intersections are performed before subtractions or unions; then subtractions and
unions are performed, left to right. Where there is no Boolean_expression and
combination_name, a new empty combination will be created. If no
Boolean_expression is provided, and combination_name does already exist and one
of -c or -r is specified, then combination_name is flagged to agree with the indicated
option. If a new region is created or an existing combination is flagged as a region
with this command, its region-specific attributes will be set according to the current
defaults (see regdef). The comb and r commands may also be used to create
combinations.

Examples:

mged> c -c abc (a u b) - (a + d)
-- Create a combination named abc according to the formula (a u b) - (a + d).

cat <objects>

The “cat” command displays a brief description of each item in the list of objects. If
the item is a primitive shape, the type of shape and its vertex are displayed. If the
item is a combination, the Boolean formula for that combination—including
operands, operators, and parentheses—is displayed. If the combination is flagged as
a region, then that fact is also displayed along with the region’s ident code, air code,
los, and GIFT material code.

Examples:

mged> cat region_1 region_2
-- Display the Boolean formulas for some regions.

center [x y z]

The “center” command positions the center of the mged viewing cube at the specified
model coordinates. This is accomplished by moving the eye position while not
changing the viewing direction. (The lookat command performs a related function by
changing the viewing direction, but not moving the eye location.) The coordinates
are expected in the current editing units. In case the coordinates are the result of
evaluating a formula, they are echoed back. If no coordinates are provided, the
current center coordinates (in current editing units, not mm) are printed and can be
used in subsequent calculations.

It is often convenient to use the center of the view when visually selecting key
locations in the model for construction or animation because of (1) the visible
centering dot on the screen, (2) the fact that zoom and rotation are performed with

Appendix A MGED Commands

165

respect to the view center, (3) the default center-mouse behavior is to move the
indicated point to the view center, and (4) the angle/distance cursors are centered by
default. This command provides the means to set and retrieve those values
numerically.

Examples:

mged> center
-- Print out the coordinates of the center of the mged display.

mged> center 12.5 5.6 8.7
-- Move the center of the mged display to the point (12.5, 5.6, 8.7).

mged> set oldcent [center]
-- Set the Tcl variable $oldcent to the display center coordinates.

mged> set glob_compat_mode 0

mged> units mm

mged> eval center [vadd2 [center] {2 0 0}]
-- Move the center point two mm in the model + x direction.

mged> units mm

mged> db adjust sphere.s V [center]

mged> redraw_vlist sphere.s
-- Update the “V” vertex of shape sphere.s in the database to be located at the current
center of the view, and recreate the vector display lists of only those object(s) that
were affected by the change.

color low high r g b str

The “color” command creates an entry in the database that functions as part of a color
lookup table for displayed regions. The ident number for the region is used to find
the appropriate color from the lookup table. The low and high values are the limits of
region ident numbers to have the indicated rgb color (0-255) applied. The str
parameter is intended to be an identifying character string, but is currently ignored.
The current list of color table entries may be displayed with the prcolor command,
and the entire color table may be edited using the edcolor command. If a color
lookup table exists, its entries will override any color assigned using the mater
command.

Examples:

Appendix A MGED Commands

166

mged> color 1100 1200 255 0 0 fake_string
-- Make an entry in the color lookup table for regions with idents from 1100 to 1200
using the color red.

comb combination_name <operation object>

The “comb” command creates a new combination or extends an existing one. If
combination_name does not already exist, then it will be created using the indicated
list of operations and objects. If it does exist, the list of operations and objects will
be appended to the end of the existing combination. The <operation object> list is
expected to be in the same form as used in the r command. The c command may also
be used to create a combination.

Examples:

mged> comb abc u a - b + c
-- Create combination abc as ((a - b) + c).

comb_color combination_name r g b

The “comb_color” command assigns the color rgb (0-255) to the existing
combination named combination_name.

Examples:

mged> comb_color region1 0 255 0
-- Assign the color green to region1.

copyeval new_primitive path_to_old_ primitive

Objects in a BRL-CAD model are stored as Boolean trees (combinations), with the
members being primitive shapes or other Boolean trees. Each member has a
transformation matrix associated with it. This arrangement allows a primitive to be a
member of a combination, and that combination may be a member of another
combination, and so on. When a combination is displayed, the transformation
matrices are applied to its members and passed down through the combinations to the
leaf (primitive shape) level. The accumulated transformation matrix is then applied
to the primitive before it is drawn on the screen. The “copyeval” command creates a
new primitive object called new_ primitive by applying the transformation matrices
accumulated along the path_to_old_primitive to the leaf primitive shape object at the
end of the path and saving the result under the name new_ primitive. The
path_to_old_ primitive must be a legitimate path ending with a primitive shape.

Examples:

Appendix A MGED Commands

167

mged> copyeval shapeb comb1/comb2/comb3/shapea
-- Create shapeb from shapea by applying the accumulated transformation matrices
from the path comb1/comb2/comb3.

copymat comb1/memb1 comb2/memb2

The “copymat” command copies the transformation matrix from a member of one
combination to the member of another.

Examples:

mged> copymat comb1/memb1 comb2/memb2
-- Set the matrix for member memb2 in combination comb2 equal to the matrix for
member memb1 in combination comb1.

cp from_object to_object

The “cp” command makes a duplicate of an object (shape or combination). If
from_object is a shape, then it is simply copied to a new shape named to_object. If
from_object is a combination, then a new combination is created that contains exactly
the same members, transformation matrices, etc, and it is named to_object.

Examples:

mged> cp comb1 comb2
-- Make a duplicate of combination comb1 and call it comb2.

cpi old_tgc new_tgc

The “cpi” command copies old_tgc (an existing TGC shape) to a new TGC shape
(new_tgc), positions the new TGC such that its base vertex is coincident with the
center of the top of old_tgc, and puts mged into the primitive edit state with new_tgc
selected for editing. This command was typically used in creating models of wiring or
piping runs; however, a pipe primitive has since been added to BRL-CAD to handle
such requirements.

Examples:

mged> cpi tgc_a tgc_b
-- Copy tgc_a to tgc_b and translate tgc_b to the end of tgc_a.

d <objects>

The “d” command deletes the specified list of objects from the mged display. This is
a synonym for the erase command. Only objects that have been explicitly displayed

Appendix A MGED Commands

168

may be deleted with the “d” command (use the who command to see a list of
explicitly displayed objects). Objects that are displayed as members of explicitly
displayed combinations cannot be deleted from the display with this command (see
dall or erase_all). Note that this has no effect on the BRL-CAD database itself. To
actually remove objects from the database, use the kill command.

Examples:

mged> d region1 shapea
-- Delete region1 and shapea from the mged display.

dall <objects>

The “dall” command deletes the specified list of objects from the mged display. This
is a synonym for the erase_all command. This command will allow the user to delete
objects that have not been explicitly displayed (unlike the d command). Note that this
has no effect on the BRL-CAD database itself. To actually remove objects from the
database, use the kill command.

Examples:

mged> dall region1 shapea
-- Delete region1 and shapea from the mged display.

db command [args...]

The “db” command provides an interface to a number of database manipulation
routines. Note that this command always operates in units of millimeters. The
command must be one of the following with appropriate arguments:

� match <regular_exp>
-- Return a list of all objects in that database that match the list of regular
expressions.

� get shape_or_path [attribute]
-- Return information about the primitive shape at the end of the shape_or_path.
If a path is specified, the transformation matrices encountered along that path will
be accumulated and applied to the leaf shape before displaying the information. If
no attribute is specified, all the details about the shape are returned. If a specific
attribute is listed, then only that information is returned.

� put shape_name shape_type attributes
-- Create shape named shape_name of type shape_type with attributes as listed in
attributes. The arguments to the put command are the same as those returned by
the get command.

Appendix A MGED Commands

169

� adjust shape_name attribute new_value1 [new_value2 new_value3...]
-- Modify the shape named shape_name by adjusting the value of its attribute to
the new_values.

� form object_type
-- Display the format used to display objects of type object_type.

� tops
-- Return all top-level objects.

� close
-- Close the previously opened database and delete the associated command.

Examples:

mged> db match *.s
-- Get a list of all objects in the database that end with “.s”.

mged> db get cone.s
-- Get a list of all the attributes and their values for shape cone.s.

mged> db get cone.s V
-- Get the value of the V (vertex) attribute of shape cone.s.

mged> db put new_cone.s tgc V {0 0 0} H {0 0 1} A {1 0 0} B {0 1 0} C {5 0 0} D {0
5 0}
-- Create a new TGC shape named new_cone.s with the specified attributes.

mged> db adjust new_cone.s V {0 0 10}
-- Adjust the V (vertex) attribute of new_cone.s to the value {0 0 10}.

mged db form tgc
-- Display the format used by the get and put commands for the TGC shape type.

dbbinary [-i|-o] -u type dest source
The “dbbinary” command is used to create or retrieve binary opaque objects.
Currently, only uniform binary objects (arrays of values) are supported. One of -i or
-o must be specified. The -i is for “input,” or creating a binary object, and the -o
option is used for “output," or retrieving a binary object. The -u type argument must
be supplied when -i is used, to indicate the type of uniform binary object to be
created. On input, the dest is the name of the object to be created, and the source is
the path to a file containing the values in the local host format. On output, dest is the
path to a file to receive the contents of the binary object whose name appears in
source. The type may be one of:

f -> float
d -> double
c -> char (8 bit)
s -> short (16 bit)

Appendix A MGED Commands

170

i -> int (32 bit)
l -> long (64 bit)
C -> unsigned char (8 bit)
S -> unsigned short (16 bit)
I -> unsigned int (32 bit)
L -> unsigned long (64 bit)

Examples:

mged> dbbinary -i -u c cmds /usr/brlcad/html/manuals/mged/mged_cmds.html
-- Create an opaque uniform binary object of characters with the name cmds that
contains the contents of the file /usr/brlcad/html/manuals/mged/mged_cmds.html.

mged> dbbinary -o /home/jim/cmds.html cmds
-- Copy the contents of the binary object named cmds into the file named
/home/jim/cmds.html.

db_glob cmd_string

Globs cmd_string against the MGED database resulting in an expanded command
string.

Examples:

mged> db_glob "l r23\[0-9\]"

l r230 r231 r232 r233 r234 r235 r236 r237 r238 r239
-- Returns a command string to list objects r230 through r239.

dbconcat database_file [prefix]

The “dbconcat” command concatenates an existing BRL-CAD database to the
database currently being edited. If a prefix is supplied, then all objects from the
database_file will have prefix added to the beginning of their names. Note that each
BRL-CAD object must have a unique name, so care must be taken not to “dbconcat” a
database that has objects with names the same as objects in the current database. The
dup command may be used to check for duplicate names. If the dup command finds
duplicate names, use the prefix option to both the dup and dbconcat commands to
find a prefix that produces no duplicates. If duplicate names are encountered during
the “dbconcat” process, computer-generated prefixes will be added to the object
names coming from the database_file (but member names appearing in combinations
will not be modified, so this is a dangerous practice and should be avoided).

Examples:

Appendix A MGED Commands

171

mged> dbconcat model_two.g two_
-- Copy all the objects in model_two.g to the current database, but prefix the name of
every object copied with the string two_.

debugbu [hex_code]

The “debugbu” command allows the user to set or check the debug flags used by
libbu. With no arguments, the debugbu command displays all the possible settings
for the bu_debug flag and the current value. When a hex_code is supplied, that value
is used as the new value for bu_debug. Similar debug commands for other BRL-CAD
libraries are debuglib for librt and debugnmg for the NMG portion of librt. Other
debugging commands include debugmem and debugdir.

Examples:

mged> debugbu
-- Get a list of available bu_debug values and the current value.

mged> debugbu 2
-- Set bu_debug to <MEM_CHECK>.

debugdir

The “debugdir” command displays a dump of the in-memory directory for the current
database file. The information listed for each directory entry includes:

� memory address of the directory structure.
� name of the object.
� “d_addr” for objects on disk, or “ptr” for objects in memory.
� “SOL,” “REG,” or “COM” if the object is a shape, region, or combination,

respectively.
� file offset (for objects on disk) or memory pointer (for objects in memory).
� number of instances referencing this object (not normally filled in).
� number of database granules used by this object.
� number of times this object is used as a member in combinations (not normally

filled in).

Examples:

mged> debugdir
-- Get a dump of the in-memory directory.

debuglib [hex_code]

The “debuglib” command allows the user to set or check the debug flags used by
librt. With no arguments, the debuglib command displays all the possible settings for

Appendix A MGED Commands

172

the librt debug flag and the current value. When a hex_code is supplied, that value is
used as the new value for the flag. Similar debug commands for other BRL-CAD
libraries are debugbu for libbu and debugnmg for the NMG portion of librt. Other
debugging commands include debugmem and debugdir.

Examples:

mged> debuglib
-- Get a list of available debug values for librt and the current value.

mged> debuglib 1
-- Set the librt debug flag to <DEBUG_ALLRAYS> (print info about rays).

debugmem

The “debugmem” command prints a list of all the memory blocks that have been
allocated and recorded in the memdebug table. Memory allocation is not normally
recorded in the memdebug table, but executing the debugbu 2 command will turn on
the <MEM_CHECK> flag, and as long as that flag is set, all memory allocation will
be recorded.

Examples:

mged> debugmem
-- Get a list of allocated memory blocks.

debugnmg [hex_code]

The “debugnmg” command with no options displays a list of all possible debug flags
available for NMG processing. If the command is invoked with a hex number
argument, that value is used as the new value for the NMG debug flag. Similar debug
commands for other BRL-CAD libraries are debuglib for librt and debugbu for libbu.
Other debugging commands include debugmem and debugdir.

Examples:

mged> debugnmg 100
-- Set the NMG debug flag to get details on the classification process.

decompose NMG_shape [prefix]

The “decompose” command processes an NMG shape and produces a series of new
NMG shapes consisting of each maximally connected shell in the original NMG
shape. If an optional prefix is supplied, the resulting NMG shapes will be named by

Appendix A MGED Commands

173

using the prefix and adding an underscore character and a number to make the name
unique. If no prefix is supplied, the default prefix “sh” will be used.

Examples:

mged> decompose shape.nmg part
-- Decompose the NMG shape named shape.nmg into maximally connected shells and
put each resulting shell into a separate NMG shape named part_1, part_2,

delay seconds microseconds

The “delay” command provides a delay of the specified time before the next
command will be processed.

Examples:

mged> delay 5 0
-- Delay for 5 seconds.

dm subcommand [args]

The “dm” command provides a means to interact with the display manager at a lower
level. The dm command accepts the following subcommands:

set [var [val]]

The “set” subcommand provides a means to set or query display manager-specific
variables. Invoked without any arguments, the set subcommand will return a list of
all available internal display manager variables. If only the var argument is specified,
the value of that variable is returned. If both var and val are given, then var will be
set to val.

size [width height]

The “size” subcommand provides a means to set or query the window size. If no
arguments are given, the display manager’s window size is returned. If width and
height are specified, the display manager makes a request to have its window resized.
Note that a size request is just that, a request, so it may be ignored, especially if the
user has resized the window using the mouse.

m button x y

The “m” subcommand is used to simulate an M command. The button argument
determines which mouse button is being used to trigger a call to this command. This
value is used in the event handler to effect dragging the faceplate scrollbars. The x
and y arguments are in X screen coordinates, which are converted to MGED screen
coordinates before being passed to the M command.

Appendix A MGED Commands

174

am <r | t | s> x y

The “am” subcommand effects mged’s alternate mouse mode. The alternate mouse
mode gives the user a different way of manipulating the view or an object. For
example, the user can drag an object or perhaps rotate the view while using the
mouse. The first argument indicates the type of operation to perform (i.e., r for
rotation, t for translation, and s for scale). The x and y arguments are in X screen
coordinates and are transformed appropriately before being passed to the knob
command.

adc <1 | 2 | t | d> x y

The “adc” subcommand provides a way of manipulating the angle distance cursor
while using the mouse. The first argument indicates the type of operation to perform
(i.e., 1 for angle 1, 2 for angle 2, t for translate, and d for tick distance). The x and y
arguments are in X screen coordinates and are transformed appropriately before being
passed to the adc command (i.e., not “dm adc”).

con <r | t | s <x | y | z> xpos ypos

This form of the “con” subcommand provides a way to effect constrained
manipulation of the view or an object while using the mouse. This simulates the
behavior of sliders without taking up screen real estate. The first argument indicates
the type of operation to perform (i.e., r for rotation, t for translation, and s for scale).
The <x | y | z> argument is the axis of rotation, translation, or scale. The xpos and
ypos arguments are in X screen coordinates and are transformed appropriately before
being passed to the knob command.

con a <x | y | 1 | 2 | d> xpos ypos

This form of the “con” subcommand provides a way to effect constrained
manipulation of the angle distance cursor while using the mouse. This simulates the
behavior of sliders without taking up screen real estate. The first argument indicates
that this is to be applied to the angle distance cursor. The next argument indicates the
type of operation to perform (i.e., x for translate in the x direction, y for translate in
the y direction, 1 for angle 1, 2 for angle 2, and d for tick distance). The xpos and
ypos arguments are in x screen coordinates and are transformed appropriately before
being passed to the knob command.

Examples:

mged> dm set
-- Get a list of the available display manager internal variables.

mged> dm set perspective 1
-- Turn on perspective projection in the display.

mged> dm size

Appendix A MGED Commands

175

-- Return the size to the display manager.

mged> dm size 900 900
-- Request that the display manager window be resized to 900x900.

mged> dm m 2 100 200
-- Simulate a button2 press at (100, 200) in X screen coordinates.

mged> dm am r 400 100
-- Start an alternate mouse mode rotation.

mged> dm adc d 300 200
-- Start a tick distance manipulation.

mged> dm con t z 200 200
-- Start a constrained translation down the Z axis.

mged> dm con a d 200 100
-- Start a constrained tick distance manipulation.

mged> dm idle
-- End drag.

draw [-A -s -o -C#/#/#] <objects | attribute name/value pairs>

Add <objects> to the display list so that they will appear on the MGED display. The e
command is a synonym for draw.

� The -C option provides the user a way to specify a color that overrides all other
color specifications including combination colors and region-id-based colors.

� The -s option specifies that subtracted and intersected objects should be drawn
with shape lines rather than dot-dash lines.

� The -A option specifies that the arguments provided to this command are attribute
name/value pairs, and only objects having the specified attributes and values are
to be displayed. The default (without -o) is that only objects having all the
specified attribute name/value pairs will be displayed.

Examples:

mged> draw object1 object2
-- Draw object1 and object2 in the MGED display.

mged> draw -C 255/255/255 object2
-- Draw object2 in white.

mged> draw -A -o Comment {First comment} Comment {Second comment}

Appendix A MGED Commands

176

-- Draw objects that have a “Comment” attribute with a value of either “First
comment” or “Second comment.”

dup file [prefix]

The “dup” command checks the specified file (which is expected to contain a BRL-
CAD model) for names that are the same as those in the current model. If a prefix is
included on the command line, all names in the specified file will have that prefix
added to their names before comparison with the current model. This command is
often used prior to invoking the dbconcat command to ensure that there are no name
clashes.

Examples:

mged> dup other_model.g
-- Check other_model.g for names duplicating those in the current model.

mged> dup other_model.g abc
-- Do the same check as above, but prefix all the names in other_model.g with abc
before comparing with the names in the current model.

e [-A -o -s -C#/#/#] <objects| attribute name/value pairs>

The “e” command adds the objects in the argument list to the display list so that they
will appear on the MGED display. This is a synonym for the draw command; see that
entry for a full list of options. The -C option provides the user a way to specify a
color that overrides all other color specifications including combination colors and
region-id-based colors. The -A and -o options allow the user to select objects by
attribute. The -s specifies that subtracted and intersected objects should be drawn
with solid lines rather than dot-dash lines.

Examples:

mged> e object1 object2
-- Draw object1 and object2 in the MGED display.

mged> e-A -o Comment {First comment} Comment {Second comment}
-- Draw objects that have a “Comment” attribute with a value of either “First
comment” or “Second comment”.

eac <aircodes>

The “eac” command adds all the regions in the current model that have one of the
aircodes in the argument list to the display list so that they will appear on the MGED

Appendix A MGED Commands

177

display. Regions that have nonzero ident numbers will not be listed by this
command. The whichair command will perform the same search, but just lists the
results.

Examples:

mged> eac 1 2 3
-- Draw all regions with aircodes 1, 2, or 3 in the MGED display.

echo text

The “echo” command merely echos whatever text is provided as an argument on the
command line. This is intended for use in MGED scripts.

Examples:

mged> echo some text goes here
-- Display the text, “some text goes here.”

edcodes <objects>

The “edcodes” command puts the user into an editor to edit a file that has been filled
with the ident, air code, material code, LOS, and name of all the regions in the
specified objects. The user may then modify the entries (except for the names). The
editor used is whatever the user has set in the environment variable EDITOR. If
EDITOR is not set, then /bin/ed is used.

Examples:

mged> edcodes object1 object2
-- Edit the region codes for all regions below object1 and object2.

edcolor

The “edcolor” command puts the user into an editor to edit a file that has been filled
with the ident based color lookup table. The entire table may be seen with the prcolor
command, and entries may be added using the color command. The editor used is
whatever the user has set in the environment variable EDITOR. If EDITOR is not set,
then /bin/ed is used.

Examples:

mged> edcolor
-- Edit the color table.

Appendix A MGED Commands

178

edcomb combname R|G regionid air_code los [material_code]

The “edcomb” command allows the user to modify the attributes of a combination.
The combname is the name of the combination to be modified. An R flag indicates
that the region flag should be set; otherwise, the region flag is unset. If the region
flag is not being set, then the remainder of the attributes are ignored. If the region
flag is being set, then the region_id, aircode, los, and material_code are set according
to the arguments supplied.

Examples:

mged> edcomb comb1 R 1001 0 50 8
-- Make comb1 a region and set its ident to 1001, its air code to 0, its LOS to 50, and
its material code to 8.

mged> edcomb comb1 0 0 0 0
-- Unset the region flag for combination comb1.

edgedir [x y z]|[rot fb]

The “edgedir” command allows the user to set the direction of an edge by specifying
a direction vector in the form of x, y, and z components or via rotation and fallback
angles. This can only be done while moving an edge of an ARB.

Examples:

mged> edgedir 0 1 0
-- Rotate the edge being edited to be parallel to the y axis.

edmater <combinations>

The “edmater” command places the user in an editor ready to edit a file filled with
shader arguments for the combinations listed on the command line. The arguments
placed in the file for editing are the shader name and its own arguments, RGB color,
RGB_valid flag, and the inheritance flag. The editor used is whatever the user has set
in the environment variable EDITOR. If EDITOR is not set, then /bin/ed is used.

Examples:

mged> edmater comb1 comb2
-- Edit the shader parameters for combinations named comb1 and comb2.

eqn A B C

The “eqn” command allows the user to rotate the face of an ARB shape by providing
the coefficients of an equation of the desired plane for the face. The coefficients A, B,

Appendix A MGED Commands

179

and C are from the plane equation:
 Ax + By + Cz = D

The user must be editing an ARB shape and be rotating a face of the ARB for this
command to have any effect. When entering such a state, the user will be asked
which of the face vertices should be held constant, and from this information the D
coefficient of the equation is determined.

Examples:

mged> eqn 0 0 1
-- Rotate the face of the ARB being edited to be parallel to the xy plane.

em [-C#/#/#] value [value value . . .]
The “em” command displays all regions that a MUVES_Component attribute that is
set to any of the specified value arguments. The –C option specifies a color to draw
the regions.

Examples:

mged> em engine pilot
-- Display all regions that have MUVES_Component attributes equal to engine or
pilot.

mged> em –C0/255/0 hydraulics
-- Display all regions that have MUVES_Component attributes equal to hydraulics in
green.

erase <objects>

The “erase” command deletes the specified list of objects from the MGED display.
This is a synonym for the d command. Only objects that have been explicitly
displayed may be deleted with the “erase” command (use the who command to see a
list of explicitly displayed objects). Objects that are displayed as members of
explicitly displayed combinations cannot be deleted from the display with this
command (see dall or erase_all). Note that this has no effect on the BRL-CAD
database itself. To actually remove objects from the database, use the kill command.

Examples:

mged> erase region1 shapea
-- Delete region1 and shapea from the MGED display.

erase_all <objects>

The “erase_all” command deletes the specified list of objects from the MGED

Appendix A MGED Commands

180

display. This is a synonym for the dall command. This command will allow the user
to delete objects that have not been explicitly displayed (unlike the d or erase
commands). Note that this has no effect on the BRL-CAD database itself. To actually
remove objects from the database, use the kill command.

Examples:

mged> erase_all region1 shapea
-- Delete region1 and shapea from the MGED display.

ev [-dfnrstuvwST] [-P#] [-C#/#/#] <objects>

The “ev” command evaluates the objects specified by tessellating all primitive shapes
in the objects and then performing any Boolean operations specified in the objects.
The result is then displayed in the MGED display according to the specified options:

� d -- Do not perform Boolean operations or any checking; simply convert shapes to
polygons and draw them. Useful for visualizing BOT and polysolid primitives.

� f -- Fast path for quickly visualizing polysolid primitives.
� w -- Draw wireframes (rather than polygons).
� n -- Draw surface normals as little “hairs.”
� s -- Draw shape lines only (no dot-dash for subtract and intersect).
� t -- Perform CSG-to-tNURBS conversion (still under development).
� v -- Shade using per-vertex normals, when present.
� u -- Draw NMG edgeuses (for debugging).
� S -- Draw tNURBs with trimming curves only, no surfaces.
� T -- Do not triangulate after evaluating the Boolean (may produce unexpected

results if not used with the w option).
� P# -- Use # processors in parallel. Default=1.
� r -- Draw all objects in red. Useful for examining objects colored black.
� C#/#/# -- Draw all objects in in the specified rgb color.

Examples:

mged> ev region1 shapea
-- Display evaluated region1 and shapea as shaded polygons.

mged> ev -wT region1
-- Display evaluated region1 as wireframe without triangulating.

exit

The “exit” command ends the MGED process. This is a synonym for the quit
command.

Examples:

Appendix A MGED Commands

181

mged> exit
-- Stop MGED.

expand regular_expression

The “expand” command performs matching of the regular_expression with the names
of all the objects in the database. It returns all those that successfully match.

Examples:

mged> expand *.r
-- Display a list of all database object names that end in “.r”.

export_body object file
The “export_body” command is used to copy the contents of the specified binary
object into the specified file. Currently, only binary objects containing a uniform
array of simple objects is supported.

Examples:
mged> export_body bin_chars /home/fred/chars
-- Copy the contents of “bin_chars” into the file “/home/fred/chars”

extrude #### distance

The “extrude” command modifies an ARB shape by extruding the specified face
through the specified distance to determine the position of the opposing face. The
face to be extruded is identified by listing its vertex numbers as they are labeled in the
MGED display when the ARB is edited. Note that the face identified is not moved,
but the opposite face is adjusted so that it is the specified distance from the specified
face. The order that the vertex numbers are listed determines the direction of the
extrusion using the right-hand rule.

Examples:

mged> extrude 1234 5
-- Move face 5678 so that it is 5 units from face 1234.

eye_pt x y z

The “eye_pt” command positions the eye point to the given x, y, and z coordinates
(specified in mm).

Examples:

Appendix A MGED Commands

182

mged> eye_pt 100 0 0
-- Position the eye at 100 mm along the x axis.

e_muves MUVES_component1 MUVES_component2 ...

The “e_muves” command displays the BRL-CAD regions that are part of the indicated
MUVES components. The internal list of MUVES components must have been
created earlier by the read_muves command. The MUVES components listed on the
command line must not use any wildcards (the expansion will result in BRL-CAD
objects, not MUVES components).

Examples:

mged> e_muves fuel transmission
-- Display the BRL-CAD regions that make up the MUVES components named “fuel”
and “transmission”

facedef #### [a|b|c|d parameters]

The “facedef” command allows the user to redefine any face of an ARB8 shape. The
user must be in Primitive Edit Mode with an ARB selected for editing. The optional
parameters may be omitted, and MGED will prompt for the missing values. The
options are:

� a
-- Specify the new location of this face by providing coefficients for its plane
equation:
 Ax + By + Cz = D.

� b
-- Specify the new location of this face using three points.

� c
-- Specify the new location of this face using rotation and fallback angles.

� d
-- Specify the new location of this face by changing the D value in the plane
equation.

� q
-- Return to MGED prompt.

Examples:

mged> facedef 1234 a 1 0 0 20
-- Move face 1234 such that it is in the yz plane at x=20.

mged> facedef 5678 b 0 0 10 10 0 10 10 10 10

Appendix A MGED Commands

183

-- Move face 5678 such that it is in the plane formed by the three points (0 0 10), (10
0 10), and (10 10 10).

facetize [-ntT] [-P#] new_object old_object

The “facetize” command creates new_object as a BOT shape by tessellating all the
primitive shapes in old_object and then performing any Boolean operations specified
in old_object. The -T option indicates that all faces in the new_object should be
triangulated. The -n option specifies that the resulting shape should be saved as an
NMG shape. The -t option is to create TNURB faces rather than planar
approximations (this option is still under development). The -P option is intended to
allow the user to specifiy the number of CPUs to use for this command, but it is
currently ignored.

Examples:

mged> facetize region1.nmg region1.r
-- Create a facetized BOT version of existing object region1.r.

find <objects>

The “find” command displays all combinations that have any of the objects specified
as a member.

Examples:

mged> find shapea
-- List all combinations that refer to shapea.

fracture NMG_shape [prefix]

The “fracture” command creates a new NMG shape for every “face” in the specified
NMG_shape. The new shapes will be named by adding an underscore and a number
to the prefix. If no prefix is specified, then the NMG_shape name provided is used in
place of the prefix.

Examples:

mged> fracture shape1.nmg f
-- Create a series of NMG shapes named “f_#”, one for each face in shape1.nmg.

g groupname <objects>

The “g” command creates a special type of combination often referred to as a group.
This builds a combination by unioning together all the listed objects. If groupname
already exists, then the list of objects will be unioned to the end of it. (Note that an

Appendix A MGED Commands

184

existing groupname is not restricted to being a group; any combination is legal.)
Other commands to build combinations are c, r, or comb.

Examples:

mged> g shape1.nmg f
-- Create or extend shape1.nmg by unioning in f.

garbage_collect

The “garbage_collect” command eliminates unused space in a BRL-CAD database
file.

Examples:

mged> garbage_collect
-- Clean out unused space in the database.

gui [-config b|c|g] [-d display_string] [-gd graphics_display_string] [-dt graphics_type]
[-id name] [-c -h -j -s]

This command is used to create an instance of MGED’s default Tcl/Tk graphical user
interface (GUI). The following options are allowed:

-config b|c|g
Configure the GUI to display the command window, the graphics
window, or both. This option is useful only when the GUI is
combining the text and graphics windows. See the -c option.

-d display_string
Display/draw the GUI on the screen indicated by the display_string.
Note that this string format is the same as the X DISPLAY
environment variable.

-gd display_string
Display/draw the graphics window on the screen indicated by the
display_string. Note that this string format is the same as the X
DISPLAY environment variable.

-dt graphics_type
Indicates the type of graphics windows to use. The possible
choices are X and ogl (for machines that support OpenGL).
Defaults to ogl, if supported; otherwise X.

-id name Specify the id to use when referring to this instance of the GUI.
-c Combine text window and display manager windows.

-s Use separate text window and display manager windows. This is
the default behavior.

-j Join the collaborative session.
-h Print the help message.

help [command]

The “help” command returns a list of available MGED commands along with a one-

Appendix A MGED Commands

185

line usage message for each. If a command is supplied as an argument, the one-line
usage message for that command is returned. The helpdevel, helplib, ?, ?devel, and
?lib commands provide additional information on available commands.

Examples:

mged> help ae
-- Display a one-line usage message for the ae command.

helpdevel [command]

The “helpdevel” command returns a list of available developer commands along with
a one-line usage message for each. If a command is supplied as an argument, the
one-line usage message for that command is returned. The help, helplib, ?,
?devel,and ?lib commands provide additional information on available commands.

Examples:

mged> helpdevel winset
-- Display a one-line usage message for the winset command.

helplib [command]

The “helplib” command returns a list of available library commands along with a
one-line usage message for each. If a command is supplied as an argument, the one-
line usage message for that command is returned. The help, helpdevel, ?, ?devel, and
?lib commands provide additional information on available commands.

Examples:

mged> helplib mat_trn
-- Display a one-line usage message for the mat_trn command.

hide <objects>
The “hide” command sets the “hidden” flag for the specified objects. When this flag
is set, the objects do not appear in t or ls command outputs. The -a option on the ls or
t command will force hidden objects to appear in its output.

Examples:

mged> hide sol_a
-- Mark sol_a as hidden.

Appendix A MGED Commands

186

history [-delays]

The “history” command displays the list of commands executed during the current
MGED session. The one exception is the hist_add command, which can add a
command to the history list without executing it. If the -delays option is used, then
the delays between commands will also be displayed.

Examples:

mged> history
-- Display the command history list.

i obj_name comb_name [operation]

The “i” command adds obj_name to the end of the combination named comb_name.
The operation may be “+,” “-,” or “u.” If no operation is specified, “u” is assumed.
If comb_name does not exist, it is created.

Examples:

mged> i region3 group5
-- Add region3 to the combination group5.

idents file_name <objects>

The “idents” command places a summary of the regions in the list of objects specified
in the file specified. If any regions include other regions, then only the first
encountered region in that tree will be listed. The resulting file will contain two lists
of regions, one in the order encountered in the list of objects, and the other ordered by
ident number. The data written for each region includes (in this order) a sequential
region count, the ident number, the air code, the material code, the LOS, and the path
to the region.

Examples:

mged> idents regions_file group1 group2 region3
-- Create a file named regions_file and list all the regions in group1, group2, and
region3 in the file.

ill obj_name

The “ill” command performs the function of selecting an object after entering solid
(i.e., primitive) illuminate or object illuminate mode. In solid illuminate mode, this
command selects the specific shape for editing. In object illuminate mode, this
command selects the leaf object for the object path, then the user may use the mouse
to select where along the object path the editing should be applied. In both modes,

Appendix A MGED Commands

187

the ill command will only succeed if the specified obj_name is only referenced once
in the displayed objects; otherwise a multiply referenced message will be displayed.
If the ill command fails, the user must resort to either using the mouse to make the
selection, or using aip and M 1 0 0.

Examples:

mged> ill shapea
-- Select shapea for editing.

in [-f] [-s] new_shape_name shape_type <parameters>

The “in” command allows the user to type in the arguments needed to create a shape
with the name new_shape_name of the type shape_type. The command may be
invoked with no arguments, and it will prompt the user for all needed information.
The -s option will invoke the primitive edit mode on the new shape immediately after
creation. The -f option does not draw the new shape, and therefore the -s option may
not be used in conjunction with -f. The possible values for shape_type are:

� arb8 -- ARB (eight vertices).
� arb7 -- ARB (seven vertices).
� arb6 -- ARB (six vertices).
� arb5 -- ARB (five vertices).
� arb4 -- ARB (four vertices).
� arbn – Arbitrary polyhedron with arbitrary number of vertices (plane equations).
� bot – Bag of Triangles.
� dsp – Displacement Map.
� pipe – Pipe (run of connected pipe or wire).
� ebm --Extruded Bit Map.
� vol --Voxels.
� hf -- Height Field deprecated, see dsp.
� ars -- Arbitrary Faceted Solid.
� half -- Half Space.
� sph -- Ellipsoid (center and radius).
� ell -- Ellipsoid (center and three semi-axes).
� ellg -- Ellipsoid (foci and chord length).
� ell1 -- Ellipsoid (center, one semi-axis, and a radius of revolution).
� tor -- Torus.
� tgc -- Truncated General Cone (most general TGC).
� tec – TGC (top radii are scaled from base radii).
� rec – TGC (right elliptical cylinder).
� trc -- TGC (truncated right circular cone).
� rcc -- TGC (right circular cylinder).
� box – ARB (vertex and three vectors).
� raw – ARB (right angle wedge).

Appendix A MGED Commands

188

� rpp -- ARB (axis aligned rectangular parallelepiped).
� rpc -- Right Parabolic Cylinder.
� rhc -- Right Hyperbolic Cylinder.
� epa -- Elliptical Paraboloid.
� ehy -- Elliptical Hyperboloid.
� eto -- Elliptical Torus.
� part -- Particle.

Examples:

mged> in new1 raw 0 0 0 0 0 1 1 0 0 0 1 0
-- Create an ARB named new1 in the form of a right angle wedge.

inside [outside_shape_name new_inside_shape_name <parameters>]

The “inside” command creates a new shape that is inside an existing shape. This
command is typically used to create an inside shape that can be subtracted from the
original shape to produce a hollow shell. The command is typically used with no
arguments, and it prompts the user for all needed information; however, all the
parameters may be supplied on the command line. If MGED is in primitive edit
mode when the “inside” command is issued, then the shape currently being edited
will be used as the “outside_shape.” Similarly, if MGED is in matrix edit mode when
the “inside” command is executed, then the current key shape will be used as the
outside shape.

Examples:

mged> inside out_arb in_arb 1 1 1 1 1 1
-- Create a shape named in_arb such that each face is 1 unit from the corresponding
face in out_arb.

mged> inside in_arb 1 1 1 1 1 1
-- Create a shape named in_arb such that each face is 1 unit from the corresponding
face in the current key shape or the shape currently being edited.

item region_name ident_number [air_code [material_code [LOS]]]

The “item” command sets the values of ident_number, aircode, material_code, and
LOS for the specified region.

Examples:

mged> item region_1 1137 0 8 100
-- Set ident number to 1137, air code to 0, material code to 8, and los to 100 for
region_1.

Appendix A MGED Commands

189

joint command [options]

articulation/animation commands (experimental)

?

This command returns a list of available joint commands.

accept [-m] [joint_names]

debug [hex code]

help [commands]

This command returns a usage message for each joint command.

holds [names]

list [names]

load file_name

mesh

move joint_name p1 [p2...p6]

reject [joint_names]

save file_name

solve constraint

test file_name

unload

journal [-d] [journal_file_name]

The “journal” command starts or stops the journaling of MGED commands to a file.
If executed with no arguments, the command stops journaling. If journal_file_name
is provided, that file will become the recipient of the journaling. If a -d option is also
provided, the journaling will include the delays between commands. Journaling is off
by default.

Examples:

mged> journal journal_file
-- Start journaling to journal_file.

keep keep_file <objects>

Appendix A MGED Commands

190

The “keep” command copies the objects specified to the keep_file. If keep_file does
not exist, it is created. If keep_file does exist, the objects are appended to it. The
keep_file is a BRL-CAD database file. The objects in the list must exist in the current
database.

Examples:

mged> keep sample.g sample1 sample2
-- Create sample.g file with objects sample1 and sample2 in it.

keypoint [x y z | reset]

The “keypoint” command without any options displays the current keypoint setting.
If a point is specified, then that point becomes the keypoint. If reset is specified, then
the default keypoint is restored. The keypoint is used as the center of rotation and
scaling in primitive edit or matrix edit (formerly known as object edit) modes. This
command has no effect when used in nonediting modes.

Examples:

mged> keypoint 10 20 30
-- Set the keypoint to the point (10 20 30) in model units.

kill [-f] <objects>

The “kill” command deletes the specified objects from the current database. This
command affects only the objects actually listed on the command line. If a
combination is killed, its members are not affected. If the -f option is specified, then
kill will not complain if some, or all, of the objects specified do not actually exist in
the database. Note that the objects are killed immediately. There is no need for a
“write file” command in MGED, and there is no “undo” command. Use this
command with caution. Other commands that remove objects from the database are
killall and killtree.

Examples:

mged> kill group1 region2 shapeb
-- Destroy group1, region2, and shapeb.

killall <objects>

The “killall” command deletes the specified objects from the current database and
removes all references to them from all combinations in the database. Note that the
objects are killed immediately. There is no need for a “write file” command in
MGED, and there is no “undo” command. Use this command with caution. Other
commands that remove objects from the database are kill and killtree.

Appendix A MGED Commands

191

Examples:

mged> killall group1 region2 shapeb
-- Destroy group1, region2, and shapeb and remove all references to these objects
from the database.

killtree <objects>

The “killtree” command deletes the specified objects from the current database and
recursively deletes all objects referenced by any of those objects. If one of the objects
listed is a combination, then that combination as well as any objects that are members
of that combination will be deleted. If a member of that combination is itself a
combination, then all of its members will also be destroyed. This continues
recursively until the primitive shapes are reached and destroyed. Note that the objects
are killed immediately. There is no need for a “write file” command in MGED, and
there is no “undo” command. Use this command with extreme caution. Other
commands that remove objects from the database are kill and killall.

Examples:

mged> killtree group1 region2 shapeb
-- Destroy group1, region2, and shapeb and remove all references to these objects
from the database.

knob [-e -i -m -v] [-o v|m|e|k] [zap|zero|(id [val])]

The “knob” command is used internally by MGED in the processing of knob
input devices and is not recommended for users. The knob command provides a
method for simulating knob input. With no options, it will display the current values
for the knobs. With the zap or zero command provided, all the knob values will be
reset to zero. If an id and value are provided, the specified knob setting will be
simulated. If the -i option is specified, then the value provided will be used as an
increment to be applied to the indicated knob. The knobs have different functions
depending on the current mode. For example, if in primitive or matrix edit mode and
a rotation or translation function is selected, the knob effects are applied to the edited
object by default. However, the -v (view coordinates) and -m (model coordinates)
options may be used to adjust the view without modifying primitives or matrices.
The -e option allows the knob effects to be applied to the edited object when they
would normally be applied to the view. The -o option allows the origin of rotation to
be specified with v, m, e, and k, indicating view, model, and eye and keypoint,
respectively. The units for value are degrees for rotation and local units for
translation. The available knob ids are:

� x -- rate-based rotation about horizontal axis.
� y -- rate-based rotation about vertical axis.
� z -- rate-based rotation about axis normal to screen.

Appendix A MGED Commands

192

� X -- rate-based translation in horizontal direction.
� Y -- rate-based translation in vertical direction.
� Z -- rate-based translation in direction normal to screen.
� S -- rate-based Scale or Zoom.
� ax -- absolute rotation about horizontal axis.
� ay -- absolute rotation about vertical axis.
� az -- absolute rotation about axis normal to screen.
� aX -- absolute translation in horizontal direction.
� aY -- absolute translation in vertical direction.
� aZ -- absolute translation in direction normal to screen.
� aS -- absolute Scale or Zoom.
� xadc -- absolute translation of adc in horizontal direction (screen coordinates -

2048 to +2048).
� yadc -- absolute translation of adc in vertical direction (screen coordinates -2048

to +2048).
� ang1 -- absolute rotation of adc angle1 (degrees).
� ang2 -- absolute rotation of adc angle2 (degrees).
� distadc -- distance setting of the adc (screen coordinates -2048 to +2048).

Examples:

mged> knob y 1
-- Start the view rotating about the vertical axis.

l [-r] <objects>

The “l” command displays a verbose description about the specified list of objects. If
a specified object is a path, then any transformation matrices along that path are
applied. If the final path component is a combination, the command will list the
Boolean formula for the combination and will indicate any accumulated
transformations (including any in that combination). If a shader and/or color has been
assigned to the combination, the details will be listed. For a region, its ident, air code,
material code, and LOS will also be listed. For primitive shapes, detailed shape
parameters will be displayed with the accumulated transformation applied. If the -r
(recursive) option is used, then each object on the command line will be treated as a
path. If the path does not end at a primitive shape, then all possible paths from that
point down to individual shapes will be considered. The shape at the end of each
possible path will be listed with its parameters adjusted by the accumulated
transformation.

Examples:

mged> l region1
-- Display details about region1.

Appendix A MGED Commands

193

mged> l group1/group2/region1/shape3
-- Display shape parameters for shape3 with matrices applied from the path.

mged> l -r a/b
-- Display all possible paths that start with a/b and end in a primitive shape
-- The shape parameters with the accumulated transformation applied will be
displayed.

labelvert <objects>

The “labelvert” command labels the vertices of the indicated objects with their
coordinate values in the MGED display window. The objects must have already been
displayed using e, E, ev, B, or any other command that results in the display of an
object.

Examples:

mged> labelvert shapeb
-- Place coordinate values in display near the vertices of shapeb.

listeval [path]

Combinations may include transformation matrices to be applied to their members. A
path through a series of combinations and ending with a primitive shape represents
that primitive shape with the transformations accumulated through the path applied to
it. The “listeval” command displays primitive shape parameters after applying the
accumulated transformations from the indicated path. If the specified path does not
end at a primitive shape, then all possible paths from the indicated path to any
primitive shape will be evaluated and displayed.

Examples:

mged> listeval group1/region1/shapeb
-- Display the parameters for shapeb after applying the transformation matrix from
group1 for region1 and the transformation matrix from region1 for shapeb.

lm [-l] [values]
The “lm” command with no values argument lists the name of every region in the
database (in alphabetical order), except for those marked as hidden with the hide
command. If the values argument is supplied, only those regions with a
“MUVES_Component” attribute having one of the values are listed. The –l option
specifies to use a long format showing object name, object type, major type, minor
type, and length.

Appendix A MGED Commands

194

Examples:

mged> lm engine
--List all regions with “MUVES_Component” attribute having a value of “engine”.

mged> lm –1 engine pilot
--List all regions with “MUVES_Component” attribute having a value of “engine” or
“pilot,” and use the long format.

loadtk

The “loadtk” command loads the initialization for the Tk window library. This is
normally done automatically when the user attaches any display manager for MGED.
If no display manager is attached, then the user must execute loadtk prior to using any
Tk facilities.

Examples:

mged> loadtk
-- Initialize the Tk window library.

lookat x y z

The “lookat” command adjusts the current view in MGED such that the eye is
looking in the direction of the given coordinates, but does not move the eye point nor
change the view size. This is similar to just rotating the viewers head to look at the
specified point, putting that point in the center of the MGED display. The center
command performs a similar function, but moves the eye_pt without changing the
viewing direction.

Examples:

mged> lookat 10 20 30
-- Rotate the view to place the point (10 20 30) (model coordinates) in the center of
the display.

ls [-A -o -a -c -r -s -p -l] [objects]

The “ls” command with no object argument lists the name of every object in the
database (in alphabetical order) except for those marked as hidden with the hide
command. If the object argument is supplied, only those objects are listed. The
object argument may include regular expressions. If the -A option is used, then the
arguments are expected to be a list of attribute name/value pairs, and objects having
attributes that match the provided list are listed. By default, an object must match all
the specified attributes in order to be listed; however, the -o flag indicates that an

Appendix A MGED Commands

195

object matching at least one attribute name/value pair should be listed. See the attr
command for information on how to set or get attributes. Regular expressions are not
supported for attributes. The following options are also allowed:

� a - List all objects in the database.
� c - List all non-hidden combinations in the database.
� r - List all non-hidden regions in the database.
� s - List all non-hidden primitives in the database.
� p - List all non-hidden primitives in the database.
� l - Use long format showing object name, object type, major type, minor type, and

length.

The ls command is a synonym for the t command. Note that when any of the above
options are used, the output is not formatted.

Examples:

mged> ls shape*
-- List all objects with names beginning with “shape” (output is formatted).

mged> ls -a shape*
-- List all objects with names beginning with “shape.”

mged> ls -p wheel*
-- List all primitives with names beginning with “wheel.”

mged> ls -r wheel*
-- List all regions with names beginning with “wheel.”

mged> ls -c suspension*
-- List all combinations with names beginning with “suspension.”

mged> ls -A -o -r Comment {First comment} Comment {Second comment}
-- List all regions that have a “Comment” attribute that is set to either “First
comment” or “Second comment.”

l_muves MUVES_component1 MUVES_component2 ...

The “l_muves” command lists the BRL-CAD regions that are part of the indicated
MUVES components. The internal list of MUVES components must have been
created earlier by the read_muves command. The MUVES components listed on the
command line must not use any wildcards (the expansion will result in BRL-CAD
objects, not MUVES components).

Examples:

mged> l_muves fuel transmission

Appendix A MGED Commands

196

-- List the BRL-CAD regions that make up the MUVES components named “fuel”
and “transmission”

make -t | new_shape type

The “make” command creates a new_shape of the indicated type. The new_shape is
sized according to the current view size and is dependent on the type. The possible
values for type are:

� arb8 -- ARB (eight vertices).
� arb7 -- ARB (seven vertices).
� arb6 -- ARB (six vertices).
� arb5 -- ARB (five vertices).
� arb4 -- ARB (four vertices).
� bot -- BOT (Bag Of Triangles).
� sph -- Ellipsoid (sphere).
� ell -- Ellipsoid (ellipsoid of revolution).
� ellg -- Ellipsoid (general ellipsoid).
� tor -- Torus.
� tgc -- Truncated General Cone (most general TGC).
� tec -- Truncated General Cone (truncated elliptical cone).
� rec -- Truncated General Cone (right elliptical cylinder).
� trc -- Truncated General Cone (truncated right circular cone).
� rcc -- Truncated General Cone (right circular cylinder).
� half -- Half Space.
� rpc -- Right Parabolic Cylinder.
� rhc -- Right Hyperbolic Cylinder.
� epa -- Elliptical Paraboloid.
� ehy -- Elliptical Hyperboloid.
� eto -- Elliptical Torus.
� part -- Particle.
� nmg -- Non-Manifold Geometry (an NMG consisting of a single vertex is built).
� pipe -- Pipe.
� grip -- support for joints.
� extrude -- experimental.
� sketch -- experimental.

Examples:

mged> make shapea sph
-- Create a sphere named shapea.

mged> make -t
-- Return a list of shape types handled by make.

Appendix A MGED Commands

197

make_bb new_shape_name <objects|paths>

The “make_bb” (make bounding box) command builds a single axis-aligned
rectangular parallelepiped (RPP) that will contain the objects and paths specified.
The paths will include any transformation matrices that accumulate from
combinations along the path. The listeval command may be used to see the effect of
transformation matrices along a path.

Examples:

mged> make_bb new_bb shapea group1/region3
-- Create an RPP named new_bb that is large enough to contain shapea and
group1/region3.

mater combination [shader_parameters[RGB [inheritance]]]

The “mater” command assigns shader parameters, RGB color, and inheritance to an
existing combination. The information may be included on the command line;
otherwise the user will be prompted for it. Some available shaders are:

� bump -- bump maps.
� bwtexture -- black and white texture maps.
� camo -- camouflage.
� checker -- checkerboard design.
� cloud -- 2D Geoffrey Gardner style cloud texture map.
� envmap -- environment mapping.
� fakestar -- a fake star pattern.
� fbmbump -- fbm noise applied to surface normal.
� fbmcolor -- fbm noise applied to color.
� fire -- flames simulated with turbulence noise.
� glass -- Phong shader with values set to simulate glass.
� gravel -- turbulence noise applied to color and surface normal.
� light -- light source.
� marble -- marble texture.
� mirror -- Phong shader with values set to simulate mirror.
� plastic -- Phong shader with values set to simulate plastic.
� rtrans -- random transparency.
� scloud -- 3D cloud shader.
� spm -- spherical texture maps.
� stack -- allows stacking of shaders.
� stxt -- shape texture mapping.
� texture -- full color texture mapping.
� turbump -- turbulence noise applied to surface normals.
� turcolor -- turbulence noise applied to color.

Appendix A MGED Commands

198

� wood -- wood texture.

Examples:

mged> mater region1 "plastic {tr 0.5 re 0.2}" 210 100 100 0
-- Set region1 to use the plastic shader with 50% transparency, 20% reflectivity, a
base color of (210 100 100), and inheritance set to 0.

matpick #|combination/member

The “matpick” command selects which matrix in the illuminated path should be
edited. A number may be specified with 0 being the topmost selection. A
combination/member may be specified to indicate that the matrix in combination that
corresponds to member is to be edited. This command is only useful in matrix edit
mode at the point where the user is selecting which matrix in the illuminated path
should be edited. It is used internally by MGED; the user should generally use the
mouse to make this selection.

Examples:

mged> matpick group1/region3
-- Select the matrix for region3 in group1 for editing.

memprint

The “memprint” command displays memory maps for debugging purposes.

Examples:

mged> memprint
-- List memory maps.

mirface #### x|y|z

The “mirface” command modifies an ARB shape by mirroring the indicated face
along the selected x, y, or z axis. An ARB shape must be selected for editing. Not all
faces of all ARB types may be edited using this command.

Examples:

mged> mirface 1234 x
-- Modify currently edited ARB by moving the face opposite face 1234 such that it is
the mirror image of face 1234 across the yz plane.

mirror old_object new_object x|y|z

Appendix A MGED Commands

199

The “mirror” command creates new_object by duplicating old_object and reflecting it
along the indicated axis. If old_object is a primitive shape, then a new shape is
created, with parameters adjusted to accomplish the mirror operation. If old_object is
a combination, then new_object will simply be a copy of old_object with all of its
members’ matrices set to perform the appropriate reflection.

Examples:

mged> mirror shape1 shape1_mirror x
-- Make a copy of shape1, name it shape1_mirror, and adjust its parameters so that it
is a mirror image of shape1 across the yz plane.

mrot x y z

Rotate the view using model x y z.

Examples:

mged> mrot 0 0 10
-- Rotate the view about the model z axis by 10˚.

mv old_name new_name

The “mv” command changes the name of old_name to new_name. Note that this
does not change any references to old_name that may appear in other combinations in
the database. The mvall command will change an object’s name everywhere.

Examples:

mged> mv shapea shapeb
-- Change the name of shapea to shapeb.

mvall old_name new_name

The “mvall” command changes the name of old_name to new_name. This will also
change any references to old_name that may appear in other combinations in the
database. The mv command will change an object’s name without changing
references to it. The prefix command will also change the names and references of
objects.

Examples:

mged> mvall shapea shapeb
-- Change the name of shapea to shapeb everywhere it occurs in the database.

Appendix A MGED Commands

200

nirt [nirt_args]

The “nirt” command runs the nirt program that is distributed with BRL-CAD to
intersect a single ray with the displayed objects. By default, nirt is run using the
current database and the currently displayed objects, and it uses the current eye point
as the ray start point and the current viewing direction as the ray direction. This
effectively fires a ray at the center of the MGED display. The resulting collection of
intersections between the ray and the objects is listed. Additional arguments may be
supplied on the nirt command line. See the man page of nirt for more details.

Examples:

mged> nirt
-- Fire a single ray through the center of the MGED display.

nmg_collapse old_nmg_shape new_nmg_shape maximum_error_dist [minimum_angle]

The “nmg_collapse” command simplifies an existing nmg_shape by a process of edge
decimation. Each edge in the old_nmg_shape is considered; if it can be deleted
without creating an error greater than the specified maximum_error_dist, then that
edge is deleted. If a minimum_angle is specified (degrees), then the edge will not be
deleted if it would create a triangle with an angle less than minimum_angle. The
resulting shape is saved in new_nmg_shape. The old_nmg_shape must have been
triangulated previous to using the nmg_collpase command. The resulting shape
consists of all triangular faces.

Examples:

mged> nmg_collapse nmg_old nmg_new 1.0 10.0
-- Decimate edges in nmg_old to produce an NMG with an error no greater than 1.0
units. The process will not create any triangles with an angle less than 10˚. The new
NMG shape will be named nmg_new.

nmg_simplify [arb|tgc|poly] new_shape nmg_shape

The “nmg_simplify” command attempts to convert an existing nmg_shape to a
simpler primitive shape type. The user may specify which type to attempt by
including arb, tgc, or poly on the command line. If no shape type is specified, all will
be attempted in the above order. If tgc is specified, the code will attempt to determine
if the nmg_shape is an approximation of a TGC shape.

Examples:

mged> nmg_simplify poly shapea.poly shapea.nmg
-- Convert the NMG shape named shapea.nmg to a polysolid named shapea.poly.

Appendix A MGED Commands

201

oed path_lhs path_rhs

The “oed” command places MGED directly into the matrix edit mode. The path_rhs
must be a path to a primitive shape, and path_lhs must be a path to a combination that
includes the first component of path_rhs as one of its members. The edited matrix
will be the matrix in the final component of path_lhs that corresponds to the first
component of path_rhs. The last component in path_rhs is used as the reference
shape during object editing.

Examples:

mged> oed group1/group2 region1/shapea
-- Place MGED into matrix edit mode, editing the matrix in group2 that corresponds
to region1, using shapea as the reference shape.

opendb [database.g]

The “opendb” command closes the current database file and opens database.g. If
database.g is not found, the current database is left open. If database.g is not
specified on the command line, the name of the current database file is returned.

Examples:

mged> opendb model.g
-- Close the current database file and open model.g.

mged> opendb
-- Return the name of the current database file.

orientation x y z w

The “orientation” command sets the view direction for MGED from the quaternion
specified on the command line.

Examples:

mged> orientation 1 0 0 0
-- Set viewing direction to bottom.

orot [-i] xdeg ydeg zdeg

The “orot” command performs a rotation of an object during matrix edit. The
rotation is performed, in order: xdeg about the x axis, then ydeg about the y axis, and
finally zdeg about the z axis. If the -i flag is given, then the angles are interpreted as
increments to the last object rotation. The rotobj command is a synonym for orot.

Appendix A MGED Commands

202

Examples:

mged> orot 0 0 35
-- Rotate currently edited object by 35˚ about the Z-axis from the original orientation.

oscale scale_factor

The “oscale“ command of matrix edit mode modifies the matrix to perform a uniform
scale operation. A scale_factor of 2 doubles the size of the associated object, and a
scale_factor of 0.5 reduces it by half.

Examples:

mged> oscale 3
-- Increase the size of the curently edited object by a factor of 3.

overlay plot_file [name]

The “overlay“ command plots the specified UNIX plot_file in the MGED display.
Phony object names are created for each part of the plot file that is in a unique color.
The names are created by adding a color to the specified name, or to
“_PLOT_OVER” if no name is provided. The color suffix is built by converting the
RGB color to a six digit hex number. Each color corresponds to 2 hex digits, so that
white becomes "ffffff," red becomes "ff0000," green is "00ff00," etc.

Examples:

mged> overlay plot.upl tmp
-- Plot the Unix plot file plot.upl in the MGED display, using tmp as the base for the
phony object names.

p value1 [value2 value3]

The “p” command provides precise control over primitive editing operations that
would normally be done using the mouse or knobs. For example, a shape rotate may
be performed by selecting rotate from the primitive edit menu, then providing the
rotation angles with the p command. A command of “p 0 30 0” would rotate the
edited shape through 30˚ about the y axis. Similarly, many of the individual
parameters of the edited shape may be set exactly using the p command. If the scale
H menu item is selected while editing a TGC, then the value1 supplied with a p
command specifies the actual length of the height vector for that TGC. This method
is the recommended technique to set precise values for shape parameters. The
translate and rotobj commands provide a similar capability for object editing.

Examples:

Appendix A MGED Commands

203

mged> p 30
-- Set the currently selected shape parameter of the currently edited shape to 30 units.

pathlist <combinations>
The “pathlist” command lists all existing paths that start from the specified
combinations and end at a primitive shape.

Examples:

mged> pathlist group1 region2
-- List all existing paths that start from the combinations group1 and region2 and end
at primitive shapes.

paths path_start

The “paths” command lists all existing paths that start from the specified path_start
and end at a primitive shape. The path_start may be specified by “/” separated
components, or they may be separated by spaces (but not both).

Examples:

mged> paths group1 region2
-- List all existing paths that start from group1/region2 and end at a primitive shape.

permute tuple

The “permute” command permutes the vertex labels for the face of an ARB shape
that is currently being edited. The tuple indicates which face is affected and also
indicates the desired result. The tuple is formed by concating the list of vertex
numbers for the face in the order desired such that the first vertex listed will become
vertex number one (and therefore the default keypoint). Only a sufficient number of
vertices to disambiguate need be included in the tuple. Note that this has no effect on
the geometry of the ARB, but may affect any texture mapping involving this shape.

Examples:

mged> permute 321
-- Rearrange the vertices of the currently edited ARB such that vertex #3 becomes
vertex #1, vertex #2 remains #2, and vertex #1 becomes #3.

pl [-float] [-zclip] [-2d] [-grid] out_file | “|” filter

The “pl” command creates a UNIX plot of the current MGED display. If an
output_file is specified, the plot is stored in that file. If a filter is specified, the output

Appendix A MGED Commands

204

is sent to that filter. The -float option requests a plot file with real numbers rather
than integers. The -zclip option requests that the plot be clipped to the viewing cube
in the Z-direction. The -2d option requests a two-dimensional plot (the default is 3D).
The -grid option is intended to include a grid in the plot, but is currently not
implemented. This command uses the dm-plot display manager. The plot command
performs the same function, but does not use the dm-plot display manager.

Examples:

mged> pl -float | pldebug
-- Create a UNIX plot of the current MGED display and pipe the results to the
pldebug command.

plot [-float] [-zclip] [-2d] [-grid] out_file | “|” filter

The “plot” command creates a UNIX plot of the current MGED display. If an
output_file is specified, the plot is stored in that file. If a filter is specified, the output
is sent to that filter. The -float option requests a plot file with real numbers rather
than integers. The -zclip option requests that the plot be clipped to the viewing cube
in the Z-direction. The -2d option requests a two-dimensional plot (the default is 3D).
The -grid option is intended to include a grid in the plot, but is currently not
implemented. This command does not use the dm-plot display manager. The pl
command performs the same function, but does use the dm-plot display manager.

Examples:

mged> plot -float | pldebug
-- Create a UNIX plot of the current MGED display and pipe the results to the
pldebug command.

polybinout file

Store vlist polygons into polygon file (experimental).

pov args

Set the point-of-view (experimental).

prcolor

The “prcolor” command lists the entries in the ident-based color table. The ident
number for a displayed region is used to find the appropriate color from the lookup
table. The low and high values are the limits of region ident numbers to have the
indicated r g b color (0-255) applied. The color table entries may be modified using
the color command, and the entire color table may be edited using the edcolor

Appendix A MGED Commands

205

command. If a color lookup table exists, its entries will override any color assigned
using the mater command.

prefix new_prefix <objects>

The “prefix” command changes the name of all the objects listed by adding the
specified new_ prefix. All references to the objects will also be changed. The mvall
command performs a similar function.

Examples:

mged> prefix test_ group1 regiona shapeb
-- Change the names of objects group1, regiona, and shapeb to “test_group1,”
“test_regiona,” and “test_shapeb.” All references to these objects will reflect the new
names.

prj_add [-t] [-b] [-n] shaderfile [image_file] [image_width] [image_height]
The “prj_add” command appends information to the specified shaderfile. The
information appended is in the form required by the “projection” shader (prj) and
includes the image_file (typically a “pix” file), the image_width and image_height,
and current view parameters frmo the MGED display. The resulting shaderfile may
then be used as the parameter to the prj shader. Before executing this command, the
region wireframe display in MGED should be aligned with the image_file
(underlayed in MGED’s framebuffer) and the image_file should have the same height
and width as the mged display. The -t option indicates that the image should be
projected through the object. The -n option requests that antialiasing not be done.

press button_label

The “press” command simulates the pressing of a button. All of these button actions
can be run directly as a command. The button_label indicates which button to
simulate. The available buttons are:

� help -- Provide a list of the available button_labels.
� 35,25 -- Switch to a view from an azimuth of 35˚ and an elevation of 25˚.
� 45,45 -- Switch to a view from an azimuth of 45˚ and an elevation of 45˚.
� accept -- Simulate the accept button (accepts edits and writes the edited object to

the database).
� reject -- Simulate the reject button (discards edits).
� reset -- Resets view to top and resizes such that all displayed objects are within

the view.
� save -- Remember the current view aspect and size.
� restore -- Restore the most recently saved view.
� adc -- Toggle display of the adc.

Appendix A MGED Commands

206

� front -- Switch to view from the front (synonym for ae 0 0).
� left -- Switch to view from the left (synonym for ae 90 0).
� rear -- Switch to view from the rear (synonym for ae 180 0).
� right -- Switch to view from the right (synonym for ae 270 0).
� bottom -- Switch to view from the bottom (synonym for ae -90 -90).
� top -- Switch to view from the top (synonym for ae -90 90).
� oill -- Enter object illuminate mode.
� orot -- Enter object rotate mode (must already be in matrix edit mode).
� oscale -- Enter object scale mode (must already be in matrix edit mode).
� oxscale -- Enter object scale (x-direction only) mode (must already be in matrix

edit mode).
� oyscale -- Enter object scale (y-direction only) mode (must already be in matrix

edit mode).
� ozscale -- Enter object scale (z-direction only) mode (must already be in matrix

edit mode).
� oxy -- Enter object translate mode (must already be in matrix edit mode).
� ox -- Enter object translate (horizontal only) mode (must already be in matrix edit

mode).
� oy -- Enter object translate (vertical only) mode (must already be in matrix edit

mode).
� sill -- Enter solid (i.e., primitive) illuminate mode.
� sedit -- (deprecated) Enter primitive edit mode.
� srot -- Enter solid (i.e., primitive) rotate mode (must be in primitive edit mode).
� sscale -- Enter solid (i.e., primitive) scale mode (must be in primitive edit mode).
� sxy -- Enter solid (i.e., primitive) translate mode (must be in primitive edit mode).
� zoomin -- Zoom in, synonym for zoom 2.
� zoomout -- Zoom out, synonym for zoom 0.5.
� rate -- Toggle between rate and absolute mode for knobs and sliders.
� edit – (deprecated) Toggle between edit and view modes for knobs and sliders

(useful during editing to allow the knobs and sliders to be used for either editing
operations (in edit mode) or to adjust the view without affecting the edited object
(in view mode).

Examples:

mged> press top
-- Switch to view from the top direction.

preview [-v] [-d delay] [-D start_frame_number] [-K end_frame_number] rt_script_file

The “preview” command allows the user to preview animation scripts in MGED. The
-d option provides a delay in seconds to be applied between each frame (the default is
no delay). The -D option allows the user to specify a starting frame number, and the -
K option allows the specification of an ending frame number. The -v flag indicates
that the objects displayed in the MGED graphics window should be displayed in

Appendix A MGED Commands

207

“evaluated” mode, as would be the result of the ev command. Note that this may
significantly slow the preview.

Examples:

mged> preview -D 101 -K 237 script.rt

-- Preview the animation script stored in the file named script.rt from frame number
101 through frame number 237.

prj_add shaderfile [image_file] [image_width] [image_height]

The “prj_add” command appends information to the specified shaderfile. The
information appended is in the form required by the “projection” shader (prj) and
includes the image_file (typically a “pix” file), the image_width and image_height,
and current view parameters from the MGED display. The resulting shaderfile may
then be used as the parameter to the prj shader. Before executing this command, the
region wireframe display in MGED should be aligned with the image_file
(underlayed in MGED’s framebuffer), and the image_file should have the same
height and width as the MGED display.

ps [-f font] [-t title] [-c creator] [-s size_in_inches] [-l line_width] output_file

The “ps” command temporarily attaches the Postscript display manager and outputs
the current MGED display to the specified output_file in PostScript format. The -f
option allows the font to be user-specified. The -t option allows the user to provide a
title (the default is “No Title”). The -c option allows the user to specify the creator of
the file (the default is “LIBDM dm-ps”). The –s specifies the size of the drawing in
inches. The –l specifies the width of the lines drawn.

Examples:

mged> ps -t "Test Title" test.ps
-- Place a PostScript version of the current MGED display in a file named test.ps and
give it the title “Test Title.”

mged> ps -l 10 -t "Test Fat Lines" fat_lines.ps
-- This time use fat lines.

push <objects>

The “push” command forces the effects of all transformation matrices that appear in
any combinations in the trees from the specified objects down to the primitive shapes.
This will change the parameters of the primitive shapes if any of the transformation
matrices are not identity matrices. All the transformation matrices visited will be set
to identity matrices. This command will fail, and no changes will be made, if any

Appendix A MGED Commands

208

primitive shape referenced by the list of objects is positioned differently in two or
more combinations. The xpush command will perform a similar function, even if
some shapes are multiply referenced.

Examples:

mged> push group1 regiona
-- Push the effects of any transformation matrices in the trees headed by group1 and
regiona down to the primitive shapes.

putmat comb_name/member_name {I | m0 m1 m2 m3 ... m16}

The “putmat” command replaces the existing transformation matrix in the
combination specified that corresponds to the member specified. The transformation
matrix may be specified with an “I” to indicate the identity matrix, or it may be
specified as 16 elements listed row-by-row. The copymat command allows the user
to copy an existing transformation matrix.

Examples:

mged> putmat group1/regiona I
-- Set the transformation matrix for regiona in group1 to the identity matrix.

q

The “q” command ends the MGED process. Note that there is no write database
command in MGED. All changes are made to the database as the user performs
them. Therefore, a q command will not restore the database to its pre-edited state.
This is a synonym for the quit command.

Examples:

mged> q
-- Quit the current MGED session.

qorot x y z dx dy dz angle

The “qorot” command rotates an object through the specified angle (in degrees). This
command requires that MGED already be in matrix edit mode. The edited object is
rotated about the axis defined by the start point (x y z) and the direction vector (dx dy
dz).

Examples:

mged> qorot 1 2 3 0 0 1 25

Appendix A MGED Commands

209

-- Rotate the currently edited object through 25˚ about the axis through the point (1, 2,
3) and in the Z-direction.

qray [subcommand]

Get/set query ray characteristics. Without a subcommand, the usage message is
printed. The qray command accepts the following subcommands:

vars

Print a list of all query ray variables.

basename [str]

If str is specified, then set basename to str. Otherwise, return the basename. Note
that the basename is the name used to create the fake shape names corresponding to
the query ray. There will be one fake shape for every color used along the ray.

effects [t|g|b]

Set or get the type of effects that will occur when firing a query ray. The effects of
firing a ray can be either t for textual output, g for graphical output or b for both
textual and graphical.

echo [0|1]

Set or get the value of echo. If set to 1, the actual nirt command used will be echoed
to the screen.

oddcolor [r g b]

Set or get the color of odd partitions.

evencolor [r g b]

Set or get the color of even partitions.

voidcolor [r g b]

Set or get the color of areas where the ray passes through nothing.

overlapcolor [r g b]

Set or get the color of areas that overlap.

fmt [r|h|p|f|m|o [str]]

Set or get the format string(s). See the man page of nirt for more details.

script [str]
Set or get the nirt script string.

Appendix A MGED Commands

210

help

Print the usage message.

Examples:

mged> qray
-- Print usage message.

mged> qray fmt o
-- Returns the overlap format string.

mged> qray oddcolor
-- Returns the rgb color used to color odd partitions.

mged> qray oddcolor 255 0 0
-- Sets the odd partition color to red.

query_ray [nirt_args]

The “query_ray” command runs the nirt program that is distributed with BRL-CAD to
intersect a single ray with the displayed objects. By default, nirt is run using the
current database and the currently displayed objects and uses the current eye point as
the ray start point and the current viewing direction as the ray direction. This
effectively fires a ray at the center of the MGED display. The resulting list of
intersections between the ray and the objects is given. Additional arguments may be
supplied on the nirt command line. See the man page of nirt for more details.

Examples:

mged> query_ray
-- Fire a single ray through the center of the MGED display.

quit

The “quit” command ends the MGED process. Note that there is no write database
command in MGED. All changes are made to the database as the user performs
them. Therefore, a quit command will not restore the database to its pre-edited state.
This is a synonym for the q command.

Examples:

mged> quit
-- Quit the current MGED session.

qvrot dx dy dz angle

Appendix A MGED Commands

211

The “qvrot” command adjusts the current MGED viewing direction such that the eye
is positioned along the direction vector (dx dy dz) from the view center and is looking
towards the view center. The angle (in degrees) allows for a twist about the viewing
direction. The ae command provides a similar capability.

Examples:

mged> qvrot 0 0 1 90
-- Set the current view to the same as achieved by the press top command.

r region_name <operation object>

The “r” command creates a region with the specified region_name. The region is
constructed using the list of Boolean operations and object pairs. The operators are
represented by the single characters “+,” “-,” and “u” for intersection, subtraction, and
union, respectively. The object associated with each operator may be a combination
or a primitive shape. No parentheses or any grouping indication is allowed in the r
command. The operator hierarchy for the r command has been established through
the ancestry of BRL-CAD and does not conform to accepted standards (see the c
command for a more standard implementation). Intersection and subtraction
operations are performed first, proceeding left to right; then union operations are
performed. BRL-CAD regions are special cases of BRL-CAD combinations and
include special attributes. Default values for these attributes may be set using the
regdef command. As new regions are built, the default ident number gets
incremented. If region_name already exists, then the operation/object pairs get
appended to its end.

Examples:

mged> r new_region u shape1 - shape2 u shape3 + group4
-- Create a region named new_region that consists of two parts unioned together. The
first part is shape1 with shape2 subtracted. The second part is the intersection of
shape3 and the combination group4.

rcc-blend rccname newname thickness [b|t]

The “rcc-blend” command generates a blend at an end (base [b] or top [t]) of the
specified RCC shape. The thickness is the radius of the TOR curvature. The blend is
saved as a region made up of an RCC and a TOR. The default end is the base.

Example:
mged> rcc-blend rcc.s blend.s 10

-- Create a region named blend.s that extends 10 units from the base of rcc.s.

Appendix A MGED Commands

212

mged> rcc-blend rcc.s blend.s 10 t

-- Create a region named blend.s that extends 10 units from the top of rcc.s.

rcc-cap rccname newname [height] [b|t]

The “rcc-cap” command is used to round the end of a cylinder with an ellipsoid. It
creates an ELL shape with the given height at one end (base [b] or top [t]) of the
specified RCC. If the height option is not specified, a spherical cap will be generated.
The default end is the base.

Examples:

mged> rcc-cap rcc.s cap.s 20
-- Create an ELL shape named cap.s with a radius of 20 units at the base of rcc.s.

mged> rcc-cap rcc.s cap.s 20 t
-- Create an ELL shape named cap.s with a radius of 20 units at the top of rcc.s.

rcc-tgc rccname newname x y z [b|t]

The “rcc-tgc” command creates a TGC shape with the specified apex (x y z) at one
end (base [b] or top [t]) of the specified RCC. The default end is the base.

Example:
mged> rcc-tgc rcc.s tgc.s 0 2 4
-- Create a TGC shape named tgc.s with an apex at (0 2 4) from the base of rcc.s.

rcc-tor rccname newname

The “rcc-tor” command is used to round the edges of the specified RCC by creating a
torus based on the parameters of that RCC. The radius values of the RCC must be
greater than half its height.

Examples:
mged> rcc-tor rcc.s tor.s
-- Create a TOR shape named tor.s using the parameters of rcc.s.

Appendix A MGED Commands

213

rcodes file_name

The “rcodes” command reads the specified file and assigns the region attributes to the
regions listed. The file is expected to be in the format produced by the wcodes
command.

Examples:

mged> rcodes region_codes
-- Read the file named region_codes and set the region specific attributes according to
the values found in the file.

read_muves MUVES_regionmap_file

The “read_muves” command reads the indicated “MUVES_regionmap_file” and
creates an internal list of all the MUVES components defined in the file along with
the corresponding BRL-CAD regions. This list can then be used to display the
regions in terms of the MUVES component names. See the e_muves, t_muves, and
l_muves commands.

Examples:

mged> read_muves region_map
-- Read the MUVES file named region_map.

red combination

The “red” command creates a file describing the specified combination and starts an
editor for the user to modify the combination. The environment EDITOR variable
will be used to select the editor. If EDITOR is not set, then /bin/ed will be used. All
the attributes of BRL-CAD regions and combinations may be edited in this way. The
region specific attributes will be ignored if the combination is not a region and is not
set to be a region during editing. It is not necessary to be in an editing mode to run
this command. The rm, r, comb, c, and g commands provide some basic combination
editing capabilities.

Examples:

mged> red group2
-- Edit the combination group2 with the user’s editor of choice.

redraw_vlist object

Given the name(s) of database objects, re-generate the vlist associated with every
shape in view that references the named object(s), either shapes or regions.
Particularly useful with outboard .inmem database modifications.

Appendix A MGED Commands

214

refresh

The “refresh” command updates the MGED display.

Examples:

mged> refresh
-- Update the MGED display.

regdebug [debug_level]

The “regdebug” command with no options toggles the display manager debug flag. If
a debug_level is supplied, then the display manager debug flag is set to that value.

Examples:

mged> regdebug
-- Toggle the display manager debug flag.

regdef item [air [los [material_code]]]

The “regdef” command sets the default region attributes used by the r and c
commands when building a BRL-CAD region. The default ident number is
incremented each time a new region is created with the r or c commands.

Examples:

mged> regdef 1003 0 100 8
-- Set the region default attributes to an ident of 1003, an air code of 0, an los of
100%, and a material code of 8.

regions output_file <objects>

The “regions” command creates a summary of all the regions in the specified list of
objects. The summary is written in the specified output_file. The summary includes,
for each region, a sequential region number, its ident, air code, material code, los, the
path from one of the objects to the region, and the Boolean formula for the region.

Examples:

mged> regions regions_file group1 group2
-- Place a summary of all the regions from group1 and group2 in the file named
regions_file.

Appendix A MGED Commands

215

release [name]

The “release” command is used to close a display manager. If invoked with no
arguments, the current display manager is closed. Otherwise, name (i.e., the Tcl/Tk
path name of the display manager window) is closed.

Examples:

mged> release
-- Close the current display manager.

mged> release .dm_X0
-- Close .dm_X0.

rfarb

The “rfarb” command creates a new ARB8 shape based on rotation and fallback
angles. The command prompts the user for all the required information. In addition
to the name for the new shape and the rotation and fallback angles, the user is
prompted for the coordinates of one corner of the ARB8 and for two of the three
coordinates of the other three vertices of one face of the ARB8. The other coordinate
of each of these vertices is calculated in order to ensure that the face is planar. The
user is then prompted for a thickness, and the first face is extruded normally by the
specified thickness to complete the ARB8.

Examples:

mged> rfarb
-- Create a new ARB8 shape according to arguments supplied in answer to prompts.

rm combination <members>

The “rm” command deletes all occurences of the listed members from the specified
combination. The red, r, comb, c, and g commands provide other combination editing
capabilities.

Examples:

mged> rm group1 regiona
-- Delete regiona from group1.

rmater file

The “rmater” command reads the specified file and sets the combinationshader, color,
and inheritance values according to those listed in the file. The format of the file is
expected to be as produced by the wmater command.

Appendix A MGED Commands

216

Examples:

mged> rmater mater_file
-- Read the file named mater_file and set the combination attributes according to
those listed in the file.

rmats file

The “rmats” command reads the specified file and sets the current MGED view to
agree with the parameters in the file. The format of the file is expected to be as
produced by the savekey command.

Examples:

mged> rmats key_file
-- Read the file named key_file and set the current MGED viewing direction
according to the parameters found there.

rot x y z

The “rot” command rotates the view or an object by xyz degrees. Exactly what is
rotated and how it is rotated are dependent on MGED’s state as well as the state of
the display manager. See arot for a similar capability.

Examples:

mged> rot 0 0 45
-- Rotate 45˚ about the Z axis.

mged> rot 45 45 0
-- Rotate 45˚ about the y axis, then rotate 45˚ about the x axis.

rotobj [-i] x-angle y-angle z-angle

The “rotobj” command rotates the currently edited object by z angle degrees about the
z direction, y angle about the y direction, and x angle degrees about the x direction in
that order. If an -i option is included, then the rotations are treated as increments to
the previous rotations. MGED must be in the matrix edit mode for this command to
be useful. The p command provides a similar capability for primitive editing.

Examples:

mged> rotobj 0 0 25

Appendix A MGED Commands

217

-- Rotate the currently edited object by 25˚ about the z direction from the original
orientation.

rpp-arch rppname newname face

The “rpp-arch” command is used to round a specified face of an RPP by creating an
RCC based on the parameters of the RPP.

Examples:

mged> rpp-arch rpp.s arch.s 1234
-- Create an RCC shape named arch.s at the 1234 face of the RPP.

rpp-cap rppname newname face height [0|1]

The “rpp-cap” command creates an ARB6 with the specified height at a particular
face of the given RPP. The optional “0” and “1” refer to the orientation of the ARB6.
If “0” is chosen, the peaks of the ARB6 are positioned at the midpoint between the
first and second points and at the midpoint between the third and fourth points of the
specified face. If “1” is chosen, the peaks of the ARB6 are positioned at the midpoint
between the first and fourth points and at the midpoint between the second and third
points of the specified face. The default is 0.

Examples:

mged> rpp-cap rpp.s cap.s 1234 20
-- Create an ARB6 shape named cap.s that extends 20 units from the 1234 face of the
RPP. The peaks of the ARB6 will be at the midpoint between point 1 and 2 and at the
midpoint between 3 and 4.

mged> rcc-cap rcc.s cap.s 1234 20 1

-- Create an ARB6 shape named cap.s that extends 20 units from the 1234 face of the
RPP. The peaks of the ARB6 will be at the midpoint between point 1 and 4 and at the
midpoint between 2 and 3.

rrt program [options]

The “rrt” command executes the specified program with the provided options and
includes the current database name and the list of currently displayed objects on the
command line. This command effectively executes:

 program options database_name objects.

Appendix A MGED Commands

218

The rrt command also provides the current MGED viewing parameters to the
program on standard input. Many BRL-CAD programs use the -M option to indicate
that viewing parameters will be provided on standard input. The rt command can be
simulated with rrt as:

 rrt /usr/brlcad/bin/rt -M -s50

provided that perspective is not currently being used. Any executable routine may be
run using rrt; however, it will always be run with the provided options followed by
the current database name and the list of currently displayed objects.

Examples:

mged> rrt echo
-- Will list the current database name and the list of currently displayed objects.

rt [options] [-- objects]

The “rt” command executes the BRL-CAD rt program with the default options of
“-s50 –M.” If perspective is turned on, then the -p option will be included with the
value of the perspective angle. The current database name is added to the end of the
rt command line along with either the specified objects or, if none is specified, the list
of currently displayed objects. The rt program is written such that options may be
repeated, and the last occurrence of an option will override any earlier occurences.
This allows the user to specify other size (-s) options. The rrt command performs a
similar function, but may be used to execute other programs as well. The -M option
tells rt to read the viewing parameters from standard input. See the man page on rt
for details. A related command is saveview, which can be used to create a shell script
(batch job) to raytrace this view in the background.

Examples:

mged> rt -s1024 -F/dev/Xl
-- Run the rt program to produce a color-shaded image of the current view in the
MGED display. The image will be 1024 pixels square and will be displayed on a
lingering X framebuffer.

mged> rt -C 200/200/255 -- roof
-- Run the rt program to produce a color-shaded image of the object roof using
MGED’s current viewing parameters. The image will have a sky-blue background
and will be displayed on the framebuffer specified by the FB_FILE shell variable.

rtcheck [options]

The “rtcheck” command executes the BRL-CAD rtcheck program with the default
options of “-s50 –M.” The -M option tells rtcheck to read the viewing parameters
from standard input so that rays are only fired from the current view. The current

Appendix A MGED Commands

219

database name and the list of currently displayed objects are added to the end of the
rtcheck command line. The rtcheck program is written such that options may be
repeated, and the last occurrence of an option will override any earlier occurences.
This allows the user to specify other size (-s) options. The rrt command performs a
similar function, but may be used to execute other programs as well. The rtcheck
program uses raytracing to check for overlapping regions in the list of objects passed
on the command line. When invoked from within MGED, any discovered overlaps
along a ray are represented as yellow lines that extend only in the areas of overlap.
Details and a count of overlaps are also reported. Note that overlaps of less than
0.1 mm are currently ignored by rtcheck. The default option of -s50 indicates that the
checking rays should be fired from a uniform square grid with 50 rays on a side. This
is very coarse and may miss significant overlaps. It is recommended that the user
select appropriate options for the rtcheck program and execute it for a variety viewing
aspects to perform a thorough check. The granularity of the grid may be controlled
with the -s, -w, -n, -g, and -G options. See the man page on rtcheck for details.

Examples:

mged> rtcheck -g10 -G10
-- Run the rtcheck program with rays fired from a uniform grid with the rays spaced
every 10 mm.

savekey file [time]

The “savekey” command saves the current viewing parameters in the specified file in
the format expected by the rmats command. If a time is included, it will also be
written to the specified file. If the file already exists, the information will be
appended to its end. The parameters saved this way are useful as keypoints in
constructing an animation. The BRL-CAD anim_keyread program will read a file
constructed by using the savekey command with some number of different views in
MGED with sequential times specified. The anim_keyread program will produce a
table of keyframes suitable for use with other BRL-CAD animation tools.

Examples:

mged> savekey key_file 5
-- Append the current viewing parameters to key_file and tag this as the key frame at
5 seconds.

saveview file [args]

The “saveview” command saves the current viewing parameters in the specified file
in the form of a shell script that will run the BRL-CAD rt program as if it had been
executed from within MGED using the rt -s512 command. Any args included on the
saveview command line will be copied to the file as options to the rt program. If the
file already exists, the script will be appended to it. This is useful in setting up images

Appendix A MGED Commands

220

to be raytraced later. The default script produced by “saveview test.rt” looks like:

#!/bin/sh
rt -M \
 -o test.rt.pix\
 $*\
 model.g\
 'object1' 'object2' \
 2>> test.rt.log\
 <<EOF
viewsize 2.780320739746094e+02;
orientation 2.480973490458727e-01 4.765905732660483e-01
7.480973490458729e-01 3.894348305183902e-01;
eye_pt 1.234152656421214e+02 7.220202900588745e+01
3.845765464924686e+01;
start 0; clean;
end;
EOF

When this script is executed, the image will be stored in test.rt.pix, and all messages
and errors generated by the rt program will be stored in test.rt.log. The above script
will produce an image of object1 and object2 from the BRL-CAD database named
model.g. The viewsize, orientation, and eye_pt parameters reproduce the view
displayed by MGED when the saveview command was executed. The presence of
“$*” in the script causes any additional command-line options given when the script
is invoked to be interpreted as additional rt options. Typically, a “-s” option might be
used to set the image size (the default is 512 pixels square). See the man page on rt
for details on available options.

If you have a saveview script and wish to change MGED to that view, merely cut-
and-paste, or source, the viewsize, orientation, and eye_pt lines from the saveview file
into MGED.

Related MGED commands are preview, for viewing the effects of an entire animation
script, and savekey. Related BRL-CAD programs are tabsub and tabinterp.

Examples:

mged> saveview rt_script -s1024
-- Create (or append to) a file named rt_script that will contain a script to run the rt
program and create a color shaded image of the current MGED display. The image
produced will be 1024 pixels square.

sca sfactor

The “sca” command is used to apply a scaling factor. The effect is determined by the
Transrom option in the Settings menu. This is normally affected by the current mode
of operation in MGED (e.g., matrix edit, primitive edit, or viewing).

Appendix A MGED Commands

221

Examples:

mged> sca 2
-- In matrix edit mode, the object being affected will get twice as big.
-- In view mode, the size of the view will be doubled (showing twice the volume of
space, hence making objects appear half their previous size on the display).

sed path

The “sed” command places MGED directly into the primitive edit mode. The path
must uniquely identify a primitive shape. If the shape is only referenced once in the
objects being displayed, then path may simply be the shape name. If the shape is
multiply referenced, then the path should be the full path from a top level displayed
object to the primitive shape to be edited. The who command will return a list of the
top-level objects currently being displayed.

Examples:

mged> sed shape1
-- Enter primitive edit state for shape1.

setview x-angle y-angle z-angle

The “setview” command sets the current view in MGED by specifying rotation angles
(in degrees) about the x, y, and z axes. The rotations are performed about the z axis
first, then the y axis, then the x axis. The “setview 0 0 0” command is a synonym for
press top.

Examples:

mged> setview 90 180 90
-- Set the current view to that set by ae 0 0.

shader combination shader_name ["{shader_args}"]

The “shader” command assigns shader parameters to the specified combination. The
shader_name indicates which shader should be assigned. If shader_args are
supplied, they will be assigned to parameters of the indicated shader. This performs a
similar function as the mater command.

Examples:

mged> shader group1 checker "{a 0,255,0 b 0,0,255}"

Appendix A MGED Commands

222

-- Assign the checkerboard shader to group1 using green and blue colors for the
squares.

shells NMG_shape

The “shells” command separates the specified NMG shape into its constituent shells.
Each shell is written to the database as a separate NMG object with a name of the
form “shell” with a number appended to make the name unique. If the NMG has only
one shell, then only one new object will be created. This differs from the decompose
command in that decompose will actually break the object into a number of separate
shells if possible.

Examples:

mged> shells object.nmg
-- Break the NMG shape named object.nmg into its constituent shells.

showmats path

The “showmats” command lists the transformation matrices encountered along the
specified path and also lists the accumulated matrix at the end of the path. If any
member occurs more than once in a combination along the path, then a matrix will be
listed for each occurrence of that member, and the accumulated matrix will only use
the first occurrence. Related commands are putmat, copymat, and listeval.

Examples:

mged> showmats head/skull/jaw
-- List the transformation matrices along the path “head/skull/jaw” and the
accumulated matrix for the entire path.

size view_size

The “size” command sets the size of the current viewing cube to the specified
view_size (in local units). This size is the length of any side of the square MGED
display.

Examples:

mged> size 250
-- Set the MGED display to be 250 units across.

solids file <objects>

The “solids” command lists a summary of all the primitive shapes used in regions
referenced by the list of objects. The summary is written to the specified file. The

Appendix A MGED Commands

223

summary is similar to that produced by the regions command, but with the addition of
primitive shape parameters. The shape parameters listed will have the accumulated
transformation matrices along the path from the listed objects to the primitive shape
applied (as would be listed by the listeval command). The showmats command may
be used to see the actual transformation matrices.

Examples:

mged> solids shapes_summary group1 regiona
-- Write a summary of all the regions in group1 and include the region named
regiona. The summary will include detailed shape parameters for the shapes used in
the regions.

sph-part sph1name sph2name newname

The “sph-part” command creates a PART shape that encompasses two specified SPH
shapes based on their parameters.

Examples:

mged> sph-part sph1.s sph2.s part.s

-- Create a PART shape named part.s that surrounds the spheres sph1.s and sph2.s.

status [subcommands]

Without a subcommand, the status command returns the following information:
current state, view size of the current display manager, the conversion factor from
local model units to the base units (mm) stored in the database, and the view matrices
of the current display manager. Status accepts the following subcommands:

state

Get the current state of MGED (i.e., “VIEWING,” “SOL PICK,” “SOL EDIT,” “OBJ
PICK,” “OBJ PATH,” “OBJ EDIT,” or “VERTPICK”).

Viewscale

Get the view scale.

base2local

Get the conversion factor from base units (mm) to local units.

local2base

Get the conversion factor from local units to base units (mm).

Appendix A MGED Commands

224

toViewcenter

Get the matrix that describes the location of the view center.

Viewrot

Get the matrix that describes the view orientation.

model2view

Get the model to view conversion matrix.

view2model

Get the view to model conversion matrix.

model2objview

Get the model to view conversion matrix. This matrix also includes changes made
during editing.

objview2model

Get the view to model conversion matrix. This matrix also includes changes made
during editing.

help

Print the usage message.

Examples:

mged> status
-- Get default information (i.e., state, view size, local2base, toViewcenter, Viewrot,
model2view and view2model).

mged> status Viewrot
-- Get the view rotation matrix.

mged> status state
-- Get the edit state.

summary [s r g]

The “summary” command with no arguments lists the number of primitive shapes,
regions, and non-region combinations in the current database. If the s argument is
supplied, then the name of each primitive shape is also listed. Similarly, the r flag
asks for the region names, and g asks for the names of all the combinations (including
region). The flags may be concatenated to get combined output.

Appendix A MGED Commands

225

Examples:

mged> summary sr
-- List a summary of primitive shapes and regions for the current database.

sv x y [z]

The “sv” command moves the view center to (x, y, z). If z is not provided, then z=0 is
used. The parameters x, y, z are integer values relative to the screen. For example,
the center of the screen is (0, 0, 0) and the upper left corner is (-2048, 2047, 0).

Examples:

mged> sv 0 0 0
-- The view is unchanged.

mged> sv 1024 0 0
-- The view center is moved half way between the current view center and the right
side of the view screen.

sync

The “sync” command causes all information in memory that should be on disk to be
written out.

Examples:

mged> sync
-- Make sure disk files are up to date.

t [-a -c -r -s] [objects]

The “t” command with no object argument lists the name of every object in the
database (in alphabetical order) except those marked as hidden with the hide
command. If the object argument is supplied, only those objects are listed. The
object argument may include regular expressions for matching. The following
options are also allowed:

� a - list all objects in the database.
� c - list all non-hidden combinations in the database.
� r - list all non-hidden regions in the database.
� s - list all non-hidden shapes in the database.

The t command is a synonym for the ls command. Note that when any of the above
options is used, the output is not formatted.

Appendix A MGED Commands

226

Examples:

mged> t shape*
-- List all objects with names beginning with “shape.”
(output is formatted)

mged> t -a shape*
-- List all objects with names beginning with “shape.”

mged> t -s wheel*
-- List all shapes with names beginning with “wheel.”

mged> t -r wheel*
-- List all regions with names beginning with “wheel.”

mged> t -c suspension*
-- List all combinations with names beginning with “suspension.”

ted

The “ted” command places the parameters of the currently edited primitive shape into
a file, then starts a text editor for the user to modify the parameters. The editor used
is whatever the user has set in the environment variable EDITOR. If EDITOR is not
set, then /bin/ed is used. MGED must be in the primitive edit mode prior to using this
command. The red command performs a similar function for combinations.

Examples:

mged> ted
-- Use a text editor to modify the currently edited shape.

title [string]

The “title” command, with no arguments, returns the title string for the current
database. If command line arguments are supplied, they will become the new title
string for the current database. Quotation marks must be doubly escaped.

Examples:

mged> title This is my \\"database\\"
-- Set the title of the current database to This is my “database.”

tol [abs #] [rel #] [norm #] [dist #] [perp #]

The “tol” command, with no arguments, lists the current tolerance settings. If the

Appendix A MGED Commands

227

command line includes any of the keywords followed by a number, then that
tolerance setting will be modified. The keywords are:

� Tessellation tolerances:
The tessellation tolerances are used to control the facetization of primitive shapes.
If more than one tolerance value is specified, the tessellation is performed to meet
the most stringent.

� abs -- This absolute tolerance is specified in model units and represents
the maximum allowable error in the distance from the actual shape surface
to the tessellated surface. An absolute tolerance of 0 means that the
absolute tolerance should be ignored.

� rel -- This relative tolerance is specified in terms of a fraction of the shape
size. The value is multiplied by the size of the shape to determine another
bound on the maximum allowable error in the distance from the actual
shape surface to the tessellated surface. A relative tolerance of 0 means
that the relative tolerance should be ignored.

� norm -- This normal tolerance is specified in degrees and represents the
maximum angle between the actual shape surface normal and the
tessellated surface normal. A normal tolerance of 0 means that the normal
tolerance should be ignored.

� Calculational tolerances:
The calculational tolerances are used in evaluating the Boolean operations
specified in a combination. This is used, for example, in the ev, facetize, and bev
commands.

� dist -- The distance tolerance is specified in model units and represents the
minimum distance required between two vertices to consider them
distinct.

� perp -- The perpendicularity tolerance is specified as the cosine of an
angle. Two objects will be considered perpendicular if the cosine of the
angle between them is less than the perpendicularity tolerance. Similarly,
two objects will be considered parallel if the cosine of the angle between
them is greater than 1.0, the perpendicularity tolerance.

Examples:

mged> tol rel .05 perp 1e-6
-- Set the relative tolerance to 5% and the perpendicularity tolerance to 1e-06 (cosine
of 89.9999˚).

tops

The “tops” command displays a list of all the top-level objects in the current database.
The top-level objects are all those objects that are not referenced by some other
combination. The hierarchical structure of BRL-CAD databases usually means that
there will be a top-level object that includes all (or at least most) of the objects in the
database.

Appendix A MGED Commands

228

Examples:

mged> tops
-- List all the top-level objects in the current database.

tor-rcc torname newname

The “tor-rcc” command creates an RCC shape that fills in the hole of a specified
TOR.

Examples:

mged> tor-rcc tor.s rcc.s

-- Create an RCC named rcc.s to fill in the hole in the middle of tor.s.

tra dx dy dz

The “tra” command translates the view or an object. Exactly what is done is
determined by MGED’s state as well as the state of the current display manager. The
parameters dx, dy, and dz are in local units.

Examples:

mged> tra 10 0 0
-- Translate by 10 units along the x axis.

track [parameters]

The “track” command builds a simple representation of the linked track of a vehicle
such as a tank. With no command line arguments, the track command will prompt
for all the required input. The vehicle is assumed to be axis-aligned with the front in
the +x direction. A combination name for the track is built by appending a unique
number to the string “track.” The information about the track may be included on the
command line, and is order-dependent. The parameters are (in order):

� x coordinate of center of frontmost roadwheel.
� x coordinate of center of rearmost roadwheel.
� z coordinate of center of all roadwheels.
� radius of all roadwheels.
� x coordinate of center of drive wheel (rear).
� z coordinate of center of drive wheel (rear).
� radius of drive wheel.
� x coordinate of center of idler wheel (front).

Appendix A MGED Commands

229

� z coordinate of center of idler wheel (front).
� radius of idler wheel.
� y coordinate of right side of track.
� y coordinate of left side of track.
� track thickness.

Examples:

mged> track 500 0 10 10 -50 50 10 550 50 10 -50 -20 2
-- Build a simple track using the provided arguments.

translate x y z

The “translate” command is used to precisely control the translation of an object in
both primitive edit and matrix edit modes. The keypoint of the edited object or shape
is translated to the specified coordinates.

Examples:

mged> translate 10 20 30
-- Move the currently edited object to the model coordinates (10 20 30).

tree [-c] [-i #] [-o outfile] object(s)

The “tree”command will list the contents of the specified objects in a tree-like format
that displays the hierarchical structure of the objects, and all objects referenced by
them, down to the primitive shape level. If -c is given, the shapes are not printed. The
-o outfile option prints the results to outfile. The -i # option allows the user to set the
number of spaces to indent.

Examples:

mged> tree group1
-- Show the structure of the tree rooted at group1 down to the primitive shape level.

mged> tree -i 2 group1
-- This time use two spaces for each level of indentation.

mged> tree -c group1
-- No shapes are printed.

t_muves

The “t_muves” command lists all the MUVES components that are known as a result
of a prior read_muves command.

Appendix A MGED Commands

230

Examples:

mged> t_muves
-- List all the known MUVES components.

units [units_type]

The “units” command, with no arguments, will return the current type of units that
MGED is using. If a units_type is specified, MGED will switch to editing in the
indicated units. The actual database is always stored in millimeters, and the display is
adjusted to the users choice of units. If the units_type specified on the command line
is one of the types allowed, it will be written to the database file as the preferred units
and succeeding invocations will use those units. The units_type strings that will be
remembered as the preferred editing unit are:

� mm -- millimeters.
� millimeter -- millimeters.
� cm -- centimeters.
� centimeter -- centimeters.
� m -- meters.
� meter -- meters.
� in -- inches.
� inch -- inches.
� ft -- feet.
� foot -- feet.
� feet -- feet.
� um -- micrometers.

Units_type strings that may be used, but will not be remembered as the preferred
editing units, are:
� angstrom.
� decinanometer.
� nanometer.
� nm.
� micron.
� micrometer.
� km.
� kilometer.
� cubit.
� yd.
� yard.
� rd.
� rod.
� mi.
� mile.

Appendix A MGED Commands

231

� nmile.
� nautical mile.
� au.
� astronomical unit.
� lightyear.
� pc.
� parsec.

Examples:

mged> units in
-- Switch to editing in “inches” and remember this as the preferred editing units for
this database.

vars [variable=value]

The “vars” command, with no arguments, will list all the MGED variables and their
values. If a variable=value string is included on the command line, then that value is
assigned to the specified variable. Note that no spaces are allowed around the “=”.
The available variables are:

� autosize -- if nonzero, then MGED will set the view size whenever it draws to an
empty display.

� rateknobs -- if nonzero, then the knobs and sliders act as rate adjustments;
otherwise, they act as absolute adjustments.

� sliders -- if nonzero, the sliders are displayed.
� faceplate -- if nonzero, the MGED faceplate is displayed.
� orig_gui -- if nonzero, the “viewing” menu is displayed.
� linewidth -- indicates how wide to draw lines.
� linestyle -- set line style of wireframe shapes. Currently not being used.
� hot_key -- the X11 keysym definition for the key to toggle the send_key value.

The default is “0xFFC6” (65478 decimal), which is the F9 key. The keysym
values are defined in the X11 file named keysymdef.h.

� context -- if nonzero (the default), then primitive editing parameters entered via
the p command will be applied to the edited shape in the context of the
combination tree above it in the displayed hierarchy. This means, for example, a
translation applied to a shape will translate the shape to some point such that
when the transformation matrices for that path are applied, the edited shape will
appear at the specified location. If context is set to zero, then the primitive edit
operations will be applied directly to the edited shape. This means that a
translation to a specific point may result in the edited shape being drawn at a point
different from that specified (due to transformations in the combination tree above
it). Note that this only affects primitive edit operations that use the p command.

� dlist -- if nonzero, use display lists.

Appendix A MGED Commands

232

� use_air -- if nonzero, use air while raytracing.
� listen -- if nonzero, listen for connections to MGED’s built-in fbserv.
� port -- port for the built-in fbserv to use.
� fb -- if nonzero, then framebuffer is active.
� fb_all -- if nonzero, use entire geometry window for the framebuffer; otherwise,

use only the rectangular area.
� fb_overlay -- if nonzero, overlay framebuffer image over geometry; otherwise,

draw geometry over the framebuffer image.
� mouse_behavior -- see the following list of mouse behaviors:

� c -- fire ray for combination edit selection.
� d -- default behavior (i.e., as found in classic MGED).
� m -- fire ray for matrix edit selection.
� p -- paint rectangular area.
� q -- fire query rays.
� r -- raytrace rectangular area.
� s -- fire ray for primitive edit selection.
� z -- zoom rectangular area.

� coords -- see the following list of coordinate systems to use for transformations:
� m -- model coordinates.
� v -- view coordinates.
� o -- object coordinates.

� rotate_about -- see the following list of centers of rotation:
� v -- view center.
� e -- eye.
� m -- model origin.
� k -- keypoint.

� transform -- see the following list of things to transform:
� a -- transform the angle distance cursor if active; otherwise same as v.
� e -- apply transformations to the edit.
� v -- apply transformations to the view.

� predictor -- if nonzero, the predictor frame will be displayed.
� predictor_advance -- the number of seconds into the future to advance the

predictor frame.
� predictor_length -- not currently used.
� perspective -- if greater than zero, this is the perspective angle in degrees;

otherwise, perspective is turned off.
� perspective_mode -- if nonzero, turn perspective on; otherwise, turn it off.
� toggle_perspective -- used to toggle among the four canned perspective angles

(i.e., 30, 45, 60, and 90).
� nmg_eu_dist -- when the -u option to the ev command is used, the NMG edgeuses

are drawn this distance (mm) away from the actual edge.
� eye_sep_dist -- if greater than zero, this is the eye separation distance (mm) for

stereo viewing; otherwise, stereo is off.
� union_op -- not currently used.

Appendix A MGED Commands

233

� intersection_op -- not currently used.
� difference_op -- not currently used.

Examples:

mged> vars sliders=1
-- Turn on the sliders.

vdraw command [args]

The “vdraw” command allows drawing of lines and polygons (optionally with per
vertex normals) in the MGED graphics display. It is used to build a named list of
drawing commands for MGED, send the list to the MGED display, modify the list, or
delete all or part of the list. All vertices in the vdraw command are in millimeters.
The MGED drawing commands are represented by integers in the vdraw command.
The MGED drawing commands and the integers that vdraw uses for them are:

MGED Drawing Command Vdraw
integer MGED Action

RT_VLIST_LINE_MOVE 0 begin a new line at this point
RT_VLIST_LINE_DRAW 1 draw line from previous point to this point
RT_VLIST_POLY_START 2 start polygon (argument is surface normal)
RT_VLIST_POLY_MOVE 3 move to first polygon vertex
RT_VLIST_POLY_DRAW 4 subsequent polygon vertices

RT_VLIST_POLY_END 5 last polygon vertex (should be same as
first)

RT_VLIST_POLY_VERTNORM 6 vertex normal (for shading interpolation)

The vdraw commands are:
� open -- with no arguments, this returns “1” if there is a open list; “0” otherwise. If

an argument is supplied, a command list is opened with the provided name.
� write -- with arguments of i c x y z, the MGED drawing command #c is placed in

the ith position of the command list with the vertex as (x y z).
-- with arguments of next c x y z, the command is placed at the end of the list.

� insert -- with arguments of i c x y z, the MGED drawing command #c is inserted
just before the ith position of the command list.

� delete -- with an integer argument of i, the ith command is deleted.
-- with an argument of “last,” the last command on the list is deleted.
-- with an argument of “all,” all the commands on the list are deleted.

� params -- with an argument of color rrggbb, the color of all objects on this list is
set. The rrggbb is a hex number representing the color, “ffffff” is white, “ff0000”
is red, “00ff00” is green, etc.
-- with a single string argument, the name of the current list is changed.

Appendix A MGED Commands

234

� read -- with an integer argument of i, the ith command is returned.
-- with an argument of “color, ” the current color is returned.
-- with an argument of “length,” the number of commands in the current list is
returned.
-- with an argument of “name,” the name of the current command list is returned.

� send -- send the current command list to the MGED display manager.
� vlist -- with an argument of “list,” return a list of the names of all existing

command lists.
-- with an argument of delete list_name, delete the specified command list.

All textual arguments may be abbreviated by their first letter.

Examples:

mged> vdraw open square
-- Open a list named square.

mged> vdraw params color ff00
-- Set color to green.

mged> vdraw write next 0 0 0 0
-- Start a line at the origin.

mged> vdraw write next 1 100 0 0
-- Draw line to (100 0 0).

mged> vdraw write next 1 100 100 0
-- Draw line to (100 100 0).

mged> vdraw write next 1 0 100 0
-- Draw line to (0 100 0).

mged> vdraw write next 1 0 0 0
-- Draw line to (0 0 0).

mged> vdraw send
-- Draw the square in the MGED display.

view subcommand

Get/set view parameters (local units). The view command accepts the following
subcommands:

center [x y z]--get/set the view center of the current view.

Appendix A MGED Commands

235

size [val]--get/set the view size of the current view.

eye [x y z]--get/set the eye point of the current view.

ypr [y p r]--get/set the yaw, pitch, and roll of the current view.

quat [v1 v2 v3 v4]--get/set the view in the form of a quaternion.

aet [a e t]--get/set the azimuth, elevation, and twist of the current view.

Examples:

mged> view center
-- Get the view center.

mged> view center 0 0 0
-- Set the view center at the origin of model space.

viewsize view_size
The “viewsize” command sets the size of the current viewing cube to the specified
view_size (in local units). This size is the length of any side of the square mged
display. This command is a synonym for the size command.

Examples:

mged> viewsize 250
-- Set the mged display to be 250 units across.

vnirt [nirt args] x y

This command interprets x and y as view coordinates (i.e., +-2047) and converts them
to model coordinates (local units) using a value of 2047 for view z before passing
them to nirt. All other arguments are passed to nirt without modification.

vquery_ray x y

Same as vnirt.

vrmgr host {master | slave | overview}

The “vrmgr” command establishes a link between the current MGED display and a
vrmgr process running on the specified host. The vrmgr program is a manager for
virtual reality displays using MGED. The vrmgr process must be started on host prior

Appendix A MGED Commands

236

to executing the vrmgr command in MGED. The second command line argument to
the vrmgr command is the role of the current MGED display. The master display
controls the viewing parameters of itself and all the slave displays. The overview
display acts as an observer of the entire virtual reality process.

Examples:

mged> vrmgr host1.arl.mil master
-- Set the current MGED display as the master for the vrmgr process running on the
host named host1.arl.army.mil.

vrot xrot yrot zrot

The “vrot” command rotates the view on the current geometry display window. The
parameters xrot, yrot, and zrot are rotations (specified in degrees) about the viewing
coordinate axes.

If the display is in rotate-about-center mode, then the rotation will occur about the
center of the viewing volume. In rotate-about-eye mode, the view on the display will
be rotated about the eye. The vars command (or a menu button) allows the user to
toggle between the two modes.

Examples:

mged> vrot 90 0 0
-- Rotate 90˚ about view x axis.

mged> vrot 0 180 0
-- Rotate 180˚ about view y axis.

wcodes file <objects>

The “wcodes” command writes ident, air code, material code, LOS, and name of all
the regions in the list of objects to the specified file. The format used is compatible
with the rcodes command.

Examples:

mged> wcodes code_file group1 group2
-- Write region data for all the regions in group1 and group2 to code_file.

whatid region_name

The “whatid” command lists the ident number of the specified region.

Examples:

Appendix A MGED Commands

237

mged> whatid regiona
-- Get the ident number for regiona.

which_shader <shaders>

The “which_shader” command lists all the regions that use one of the shaders
specified.

Examples:

mged> which_shader plastic light
-- List all regions in the current database that use the plastic or light shaders.

whichair <air_codes>

The “whichair” command lists all the regions that use one of the air codes specified.
The eac command will perform a similar search, but will draw the qualifying regions
in the MGED display rather than listing them. Regions that have nonzero ident
numbers will not be listed by this command.

Examples:

mged> whichair 2 3
-- List all regions in the current database that have air codes of 2 or 3.

whichid <idents>

The “whichid” command lists all the regions that use one of the idents specified.

Examples:

mged> whichid 1002 1003
-- List all regions in the current database that have idents of 1002 or 1003.

who [real | phony | both]

The “who” command lists the top-level objects that are currently displayed. The
phony flag asks for just phony objects. Phony objects are typically objects that are
drawn in the MGED display, but are not actual database objects. Some phony objects
are drawings from the vdraw command and the edgeuses drawn by the ev -u
command. The real flag asks for just real objects, and the both flag asks for both real
and phony objects. The default is just real objects. Any of the flags may be
abbreviated by its first letter. The x command also lists displayed shapes, but in more
detail.

Appendix A MGED Commands

238

Examples:

mged> who p
-- List all top-level phony objects currently displayed.

wmater file <objects>

The “wmater” command lists the shader name and parameters, RGB color,
RGB_valid flag, and the inheritance flag to the specified file for the listed objects.
The format used is compatible with the rmater command. If file already exists, the
new data is appended to it.

Examples:

mged> wmater mater_file group1 regiona
-- List the shader parameters of group1 and regiona to mater_file.

x [level]

The “x”command lists all the primitive shapes currently drawn in the MGED display.
The level determines how much detail should be included in the list. For level zero
(the default), only a list of paths to shapes in the display list is produced. Each shape
is prefixed by “VIEW” or “-no-,” indicating that the shape is actually being drawn or
that it is being skipped, respectively. If level is greater than zero, the center, size,
ident number, RGB color assigned to the region, and the actual color used to draw the
shape are also listed. If level is greater than one, the number of vlist structures and
the number of points in each vlist structure are also listed for each shape. If level is
greater than two, then the actual lines drawn for each shape are also listed. The who
command performs a similar function, but lists only the top-level objects that are
displayed.

Examples:

mged> x
-- List the paths to the displayed shapes.

xpush object

The “xpush” command “pushes” the effects of transformation matrices in the paths,
from the specified object to the primitive shapes, into the shapes and replaces all the
transformation matrices with identity matrices. The push command performs a
similar function, but will refuse to make any changes if any shape needs to be
transformed into more than one location/orientation/scale. The xpush command will
recognize such situations and create extra copies of such shapes to accept the
different transformation effects. New shapes created by this command will have a

Appendix A MGED Commands

239

suffix appended to the original name to make the new name unique. Combinations
referring to the new shape will also be modified to reflect the name change. The push
command performs the same function but will refuse to make any changes if it cannot
accomplish the “push” without creating any new shapes.

Examples:

mged> xpush group1
-- Move all the effects of the transformation matrices in the tree rooted at group1
down to the shape level (creating new shapes if needed).

zoom scale_factor

The “zoom” command changes the size of the viewing cube for the MGED display,
resulting in a “zoom in” or “zoom out” effect. A scale_factor greater than one
reduces the size of the viewing cube (“zoom in”). A scale_factor of less than one
increases the size of the viewing cube (“zoom out”).

Examples:

mged> zoom 2
-- Reduces the size of the current viewing cube by half (effectively doubling the size
of objects in the display).

Appendix A MGED Commands

240

MGED Developer Commands
aip cmd_win collaborate get_comb get_dm_list
get_edit_solid get_more_default grid2model_lu grid2view_lu gui_destroy
hist make_name mged_update mmenu_get mmenu_set
model2grid_lu model2view model2view_lu output_hook put_comb
put_edit_solid reset_edit_solid rset set_more_default share
solids_on_ray stuff_str svb tie view2grid_lu
view2model view2model_lu view2model_vec view_ring viewget
viewset winset

aip [f|b]
The “aip” command advances the illumination pointer when MGED is in the solid
illuminate state or the object illuminate state. In either of the illuminate states, a
single primitive shape is highlighted at one time, and the path to that shape is
displayed. Moving the mouse vertically in the MGED display causes different shapes
to be highlighted and their paths to be displayed. The aip command causes the next
shape in the list to be highlighted (if used with no arguments or the f argument), or it
causes the previous shape in the list to be highlighted (if used with the b argument).
When the desired shape is highlighted, it is selected by clicking the middle mouse
button or by using the M command. If MGED is in the object path state, the place
along the path where the edit is to take place will advance. Once the desired path
position is displayed, it is selected by clicking the middle mouse button or by using
the M command.

Examples:

mged press sill
-- Enter solid (i.e., primitive) illuminate mode.

mged aip
-- Hightlight the next shape.

mged aip b
-- Highlight the previous shape.

mged M 1 0 0
-- Select the highlighted shape.

cmd_win subcommand

This command is used to maintain internal command window structures. The
cmd_win command accepts the following subcommands:

Appendix A MGED Commands

241

open id -- This subcommand is used to create the internal data structures for a new
command window. If id is already in use, nothing is changed.
close id -- This subcommand releases id’s internal data structures. If the referenced
command window is tied to a display manager, then that association is also removed.

set id -- This subcommand sets the current command window to id. If this command
window is tied to a display manager, that display manager becomes the current
display manager.

get -- This subcommand returns the id of the current command window.

Examples:

mged cmd_win open my_id
-- Create a command window named my_id.

mged cmd_win close my_id
-- Closes the command window my_id.

mged cmd_win set my_id
-- my_id becomes the current command window.

mged cmd_win get
-- Gets the current command window.

collaborate subcommand

This command is used to maintain the “collaborative session.” The collaborative
session is a list whose members share a view and view ring among the upper right
display manager panes. The collaborate command accepts the following
subcommands:

join id -- This causes the GUI associated with id to join the collaborative session.
quit id -- This causes the GUI associated with id to quit the collaborative session.

show -- This returns the list of participants (ids) in the collaborative session.

Examples:

mged collaborate join bill
-- bill is added to the collaborative session.

mged collaborate quit bill
-- bill is removed from the collaborative session.

Appendix A MGED Commands

242

mged collaborate show
-- Show list of collaborative participants.

get_comb comb_name
The “get_comb” command returns a Tcl list of information about comb_name. If
comb_name is a region, the following information is returned:

NAME REGION REGION_ID AIRCODE GIFT_MATERIAL
LOS COLOR SHADER INHERIT BOOLEAN_FORMULA

Otherwise, the following shorter list is returned:

NAME REGION COLOR SHADER INHERIT BOOLEAN_FORMULA

Examples:

mged get_comb some_region
some_region Yes 1000 0 1 100 {0 220 220} plastic No { u box - ball }

mged get_comb some_non_region
some_non_region No {0 220 220} plastic No { u box2 - ball2 }

get_dm_list

The “get_dm_list” command returns a list of all open display managers. The
members of this list are the actual Tcl/Tk window names of the open display
managers.

get_more_default

Returns the current default input value.

grid2model_lu gx gy

Given a point in grid coordinates (local units), convert it to model coordinates (local
units).

grid2view_lu gx gy

Given a point in grid coordinates (local units), convert it to view coordinates (local
units).

Appendix A MGED Commands

243

gui_destroy id

Destroy the GUI (Graphical User Interface) represented by id. Note that this GUI
must have been created with the gui command.

hist subcommand

This command is used to maintain command history. Hist accepts the following
subcommands:

add command

This adds command to the history list of commands executed during the current
MGED session. If command is more than one word, it must be surrounded by braces
(i.e., {make box arb8}).

next

This returns the next command in the command history list.

prev

This returns the previous command in the command history list.

Examples:

mged hist add {ae 35 25}
-- Add the command “ae 35 25” to the history list.

mged ae 0 90
mged hist prev
-- Return the previous command (i.e., ae 0 90).

make_name template

make_name -s [num]

This command generates an object name that does not occur in the database. The
name, which is generated in the format specified by template, contains an integer
count. By default, this count appears at the end of the generated name, but if template
contains the ‘@’ character, then the count appears at that position in the name.

Examples:

mged make_name wheel

Appendix A MGED Commands

244

-- Returns, say “wheel5.”

mged make_name tree@trunk
-- Returns “tree@trunk.” The two-character string ‘@@’ is interpreted as the literal
‘@’, and thus is ignored for the purposes of positioning the name count. The integer
counter starts at 0, and, by default, it is incremented each time make_name is
executed. The -s option resets this counter. If the argument num is specified, the
counter is set to this value. Otherwise, it is set to 0.

mged_update non_blocking

This command is used to handle outstanding events and to refresh the MGED
display(s). This may be useful in certain Tcl scripts to maintain interactivity while
waiting for user input. Note that if non_blocking is negative, outstanding events will
not be processed. That is, only the MGED display(s) will be refreshed.

Examples:

mged mged_update 0
-- Update the MGED display, blocking (i.e., handle all outstanding events; if none,
wait for one).

mged mged_update 1
-- Update the MGED display, nonblocking (i.e., handle all outstanding events; if
none, return immediately).

mmenu_get [i]

This command is used to get MGED’s internal menus. If i is not specified, return all
three internal menus. Otherwise, return the ith menu. Note - valid values for i are 0,
1, or 2.

Examples:

mged mmenu_get
-- Return all internal menus.

mged mmenu_get 2
-- Return the internal menu number 2.

mmenu_set id i

This Tcl proc is used to set/install MGED’s ith internal menu in the Tcl/Tk button
menu owned by id.

Appendix A MGED Commands

245

mged mmenu_set bill 0
-- Install MGED’s 0th internal menu into id’s button menu.

model2grid_lu mx my mz

Convert a point in model coords (local units) to a point in grid coords (local units).

model2view x y z

The “model2view” command converts the supplied point (in model coordinates) to
view coordinates. View coordinates are the coordinates in the viewing cube with
values between -1.0 and +1.0 being inside the viewing cube.

Examples:

mged model2view 10 20 30
-- Display the view coordinates that correspond to the point (10 20 30) in model
space.

model2view_lu mx my mz

Convert a point in model coordinates (local units) to a point in view coordinates
(local units).

output_hook [hook_cmd]

Set up to have output from bu_log sent to hook_cmd. If hook_cmd is not specified,
the output hook is deleted.

put_comb comb_name is_Region [id air gift los] color shader inherit Boolean_expr

The “put_comb” command defines the combination comb_name. If is_Region is Yes,
then id, air, gift and los must be specified. If is_Region is No, then id, air, gift, and
los must not be specified.

Examples:

mged put_comb not_region No \"0 220 220\" plastic No \"u box\\n- ball\"
-- Defines a combination called not_region.

mged put_comb my_region Yes 1000 0 1 100 \"0 220 220\" plastic No \"u box\\n-
ball\"
-- Defines a region called my_region.

Appendix A MGED Commands

246

reset_edit_solid

Reset the parameters for the currently edited shape (i.e. es_int) to the database values.

rset [res_type [res [vals]]]

Provides a mechanism to get/set resource values for the given resource types. The
supported resource types are: ax (Axes), c (Color Schemes), g (Grid), r (Rubber
Band), and var (MGED Variables). Basically, rset always gets a value unless enough
information is given to set a value. For example, with no parameters, rset returns a
list of all resource values for the supported resource types. If rset is executed with
only the res_type given, a list of all resource values for the given res_type is returned.

Examples:

mged rset g
Grid

draw=0
snap=0
anchor=0,0,0
rh=1
rv=1
mrh=5
mrv=5

mged rset g snap
-- Get value for grid snapping 0.

mged rset g snap 1
-- Enable snapping.

mged rset r
Rubber Band
draw=0
linewidth=0
linestyle=‘s’
pos=0,0
dim=0,0

mged rset r draw
-- Get value for “Rubber Band’s” draw variable 0.

Appendix A MGED Commands

247

mged rset r draw 1
-- Draw rubber band.

mged rset ax
Axes
model_draw=0
model_size=500
model_linewidth=1
model_pos=0,0,0
view_draw=0
view_size=500
view_linewidth=1
view_pos=0,0
edit_draw=0
edit_size1=500
edit_size2=500
edit_linewidth1=1
edit_linewidth2=1.
--Prints the values of the axes

mged rset ax model_size
-- Get size of model axes 500.

set_more_default more_default

Set the current default input value.

share [-u] resource dm1 [dm2]

The “share” command provides a mechanism to share (or unshare with the –u option)
resources among display managers. When a resource is shared between two or more
display managers, any change to that resource is seen only in the sharing display
managers. The supported resource types are: ad (ADC), ax (Axes), c (Color
Schemes), d (Display Lists), g (Grid), m (Menu), r (Rubber Band), vi (View), and var
(MGED Variables).

Examples:

mged share g .dm_ogl0 .dm_ogl1
-- .dm_ogl0 shares its grid resource with .dm_ogl1.

mged share -u g .dm_ogl1
-- .dm_ogl1 acquires a private copy of the grid resource.

Appendix A MGED Commands

248

solids_on_ray h v

List all displayed shapes along a ray.

stuff_str string

Sends a string to MGED’s tty, while leaving the current command line alone. This is
used to relay the activity of Tcl/Tk command windows to MGED’s tty. If MGED is
no longer attached to a tty, nothing happens.

svb

The “svb” command sets the view reference base variables, which are used internally
by the knob command to implement absolute rotation, translation, and scale.

Examples:

mged svb
-- Set the view reference base variables with respect to the current view.

tie [[-u] command_window [display_window]]

The “tie” command is used to create (or untie/destroy with the -u option) an
association between a command window and a display window. When there exists
such an association, all commands entered from the command window will be
directed at the associated display window. The command_window can be specified
with MGED to refer to the tty from which MGED was started or an id associated with
a Tcl/Tk interface window created with gui . The display_window is specified with
its Tcl/Tk pathname. If no parameters are given, a listing of the current
command_window/display_window pairs is returned. If only the command_window
is given, the display_window associated with command_window is returned. If both
parameters are given, the command_window/display_window association is created.

Examples:

mged tie my_id .my_display_window
-- Create the association between my_id and .my_display_window.

mged tie my_id
.my_display_window
-- Returns the display window associated with my_id.

mged tie

Appendix A MGED Commands

249

{my_id .my_window} {mged {}}
-- List all of the command_window/display_window pairs.

view2grid_lu vx vy vz

Given a point in view coordinates (local units), converts to grid coordinates (local
units).

view2model x y z

The “view2model” command converts the specified point (x y z) in view coordinates
to model coordinates (mm). The part of view space displayed by MGED is the cube -
1.0 <= x,y,z <= +1.0.

Examples:

mged view2model 1 1 0
-- List the model coordinates of the upper right corner of the MGED display (in a
plane at the center of the viewing cube).

view2model_lu vx vy vz

Given a point in view coordinates (local units), converts to model coordinates (local
units).

view2model_vec vx vy vz

Given a vector in view coordinates, convert it to model coordinates.

view_ring subcommand

This manipulates the view ring for the current display manager. The view ring is a
list of views owned by a display manager. Views can be added or removed and can
also be traversed or queried. View_ring accepts the following subcommands:
add
This subcommand adds the current view to the view ring.

next

This subcommand makes the next view on the view ring the current view.

prev

Appendix A MGED Commands

250

This subcommand makes the previous view on the view ring the current view.

toggle

This subcommand toggles between the current view and the last view.

delete vid

This subcommand removes/deletes the view with a view id of vid from the view ring.
The last view cannot be removed (i.e., there is always one view on the view ring).

goto vid

This subcommand makes the view with a view id of vid the current view.

get [-a]

Returns the id of the current view. If -a is specified, all view ids on the view ring are
returned.

Examples:

mged view_ring add
-- Add the current view to the view ring.

mged view_ring goto 1
-- Go to view 1.

mged view_ring delete 1
-- Delete view 1 from the view ring.

viewget parameter

The “viewget” command displays various mged view parameters. The possible
parameters are:

� aet -- list the azimuth, elevation, and twist for the current viewing aspect.
� center -- list the model coordinates (mm) of the center of the viewing cube.
� size -- list the size (mm) of a side the current MGED display.
� eye -- list the model coordinates (mm) of the current eye point.
� ypr -- list the yaw, pitch, and roll angles (degrees) of the current viewing aspect.
� quat -- list the quaternion for the current viewing aspect.

Examples:

mged viewget center
-- List the model coordinates of the center of the MGED viewing cube.

Appendix A MGED Commands

251

viewset <parameter value>

The “viewset” command sets various MGED view parameters. More than one
parameter may be set with one command. The possible parameters are:

� aet -- set the azimuth, elevation, and twist for the current viewing aspect.
� center -- set the model coordinates (mm) of the center of the viewing cube.
� size -- set the size (mm) of a side of the current MGED display.
� eye -- set the model coordinates (mm) of the current eye point.
� ypr -- set the yaw, pitch, and roll angles (degrees) of the current viewing aspect.
� quat -- set the quaternion for the current viewing aspect.

Examples:

mged viewset center 1 2 3 size 100
-- Set the model coordinates of the center of the MGED viewing cube to the point (1
2 3) and set the size of the viewing cube to 100 mm.

winset [pathName]

The “winset” command sets the current display manager to pathName. If pathName
is not given, the current display manager is returned.

Examples:

mged winset .my_window
-- .my_window is now the current display manager.

mged winset
-- Returns the current display manager (i.e., .my_window).

Appendix A MGED Commands

252

Intentionally Left Blank

Appendix B Emacs and Vi Commands

253

Appendix B: Emacs and Vi Commands

Appendix B Emacs and Vi Commands

254

Intentionally Left Blank.

Appendix B Emacs and Vi Commands

255

MGED emulates two popular text editors, emacs and vi. The default emulation is emacs,
which is available for use as soon as you launch MGED. If you prefer the vi emulation,
move your mouse cursor to File on the menu bar and select Preferences. From the drop-
down menu that appears, select Command Line Edit and then vi. The vi emulator will
then be available for use.

The commands for emacs emulation are:

Command Description

BACKSPACE backward delete a character
DELETE backward delete a character
Left go backward one character
Right go forward one character
Up repeat the previous command
Down go to the next command
Home go to the beginning of the line
End go to the end of the line
CTRL+a go to the beginning of the line
CTRL+b go backward one character
CTRL+c interrupt command (not really an emacs command, but it works)
CTRL+d delete character under cursor
CTRL+e go to the end of line
CTRL+f go forward a character
CTRL+h delete character to left of cursor
CTRL+k delete characters to end of line
CTRL+p go to previous command
CTRL+t transpose next two characters
CTRL+u undelete line
CTRL+w delete to beginning of line

The commands for vi emulation are:

Command Description

Insert Mode

ESCAPE command
Left move backward one character
Right move forward one character
BACKSPACE delete character to left of cursor

Appendix B Emacs and Vi Commands

256

Command Mode

Left move backward one character
Right move forward one character
BACKSPACE move backward one character
Space move forward one character
A insert text at end of line
C end of line
D delete text to end of line
F search backward character
I go to beginning of line and insert character(s)
R overwrite text to right of cursor
X backward delete a character
O go to beginning of line
$ go to end of line
; continue search in same direction
, continue search in opposite direction
a go forward one character and append character(s)
b go backward one word
c change word
d delete
e go to end of word
f search forward one character
h go backward one character
i insert character(s)
j next command
k previous command
l go forward a character
r replace a character
s delete a character and insert new character(s)
w move forward a word
x delete a character

Appendix C Primitive Shapes

257

Appendix C: Primitive Shapes

Appendix C Primitive Shapes

258

Intentionally Left Blank

Appendix C Primitive Shapes

259

The following is a list of primitive shapes that MGED currently recognizes. Note in the
Definitions column that a number of these shapes are stored in the database as other
shapes because they are, in fact, special cases of those shapes. For example, a sphere
(sph) is stored as an ellipsoid (ell) because, in actuality, it is an ellipsoid with equal-
length vectors.

 Appendix C Primitive Shapes

260

Primitive Shape/
BRL-CAD Abbreviation

Input Parameters/
Definitions

Raytraced
Figure

Arbitrary Convex Polyhedron, 8pts
(arb8)

8 vertices

Arbitrary Convex Polyhedron, 7pts
(arb7)

7 vertices

Stored as an arb8

Arbitrary Convex Polyhedron, 6pts
(arb6)

6 vertices

Stored as an arb8

Arbitrary Convex Polyhedron, 5pts
(arb5)

5 vertices

Stored as an arb8

Arbitrary Convex Polyhedron, 4pts
(arb4)

4 vertices

Stored as an arb8

 Appendix C Primitive Shapes

261

Rectangular Parallelepiped (rpp)

8 vertices

Stored as an arb8

Ellipsoid (ell)

-Vertex, V
-Vector A
-Vector B
-Vector C

Vectors A, B, and C are perpendicular.

Ellipsoid Generic (ellg)

-Focus point 1
-Focus point 2
-Chord length, l (which is longer than the
distance between the foci)

Stored as an ell, where vectors A, B, and C
are perpendicular and B and C have equal
lengths.

Ellipsoid 1 (ell1)

-Vertex, V
-Vector A
-Radius, r

Stored as an ell, where vectors A, B, and C
are perpendicular and B and C have equal
lengths.

Sphere (sph)

-Vertex, V
-Radius, r

Stored as an ell, where vectors A, B, and C
are perpendicular and have equal lengths.

 Appendix C Primitive Shapes

262

Truncated General Cone (tgc)

-Vertex, V
-Height vector, H
-Vector A
-Vector B
-Scalar c
-Scalar d

A and B are perpendicular vectors specifying
an ellipse at the base. Vectors A and C are
parallel, and vectors B and D are parallel. C
is formed by scaling A by c. D is formed by
scaling B by d.

Right Circular Cylinder (rcc)

-Vertex, V
-Height vector, H
-Radius, r

Stored as a tgc, where vectors A and B have
equal lengths, C and D have equal lengths,
and all vectors are perpendicular to H.

Right Elliptical Cylinder (rec)

-Vertex ,V
-Height vector, H
-Major axis for the ellipse
-Minor axis for the ellipse

Stored as a tgc, where vectors A and C have
equal lengths, B and D have equal lengths,
and all vectors are perpendicular to H.

Truncated Elliptical Cone (tec)

-Vertex, V
-Height vector, H
-Major axis for the ellipse
-Minor axis for the ellipse
-Ratio for the ellipse

Stored as a tgc, where the length of vector C
equals the length of vector A × a ratio and the
length of vector D equals the length of vector
B × the same ratio.

 Appendix C Primitive Shapes

263

Truncated Right Cone (trc)

-Vertex, V
-Height vector, H
-Radius of base
-Radius of top

Stored as a tgc, where vectors A, B, C, and D
are perpendicular to H, vectors A and B have
equal lengths, the length of vector C equals
the length of vector A × a ratio, and the
length of vector D equals the length of B ×
the same ratio.

Torus (tor)

-Vertex, V (center of hole)
-Normal direction for the plane of the ring
-Radius 1 (radius from V to center of tube)
-Radius 2 (radius of tube)

Elliptical Torus (eto)

-Vertex, V
-Normal vector
-Radius of revolution, r
-Vector C (the major axis of the ellipse)
-Elliptical semi-minor axis (magnitude of the
semi-minor axis of the ellipse), D

The magnitude of C must be greater than that
of D.

Elliptical Hyperboloid (ehy)

-Vertex, V
-Height vector, H
-Vector A
-Scalar b (the magnitude of the perpendicular
vector, B)
-Apex to asymptote distance, c

The length of A is greater than that of B.

 Appendix C Primitive Shapes

264

Elliptical Paraboloid (epa)

-Vertex, V
-Height vector, H
-Vector A
-Scalar b (which is the magnitude of the
perpendicular vector B)

Right Hyperbolic Cylinder (rhc)

-Vertex, V
-Height vector, H
-Vector B
-Rectangular half width, r,
-Apex to asymptote distance, c

Right Parabolic Cylinder (rpc)

-Vertex, V
-Height vector, H
-Vector B
-Rectangular half width, r

Particle (part)

-Vertex, V
-Height vector, H
-Radius at vertex V end of particle, v
-Radius at opposite end of particle, h

 Appendix C Primitive Shapes

265

There are additional shapes available in MGED that are not listed in the
preceding table. In general, they are for more advanced modeling, are still
in development, or have significant performance implications. They
include the following:

bot, dsp, extrude, grip, half, pipe, hf, joint, nmg, poly, sketch

 Appendix C Primitive Shapes

266

Intentionally Left Blank

267

Index

% ... 150
? ... 151
?devel .. 151
?lib .. 151
3ptarb .. 150
accept (see also apply and OK) 48,

72, 87, 89, 117
adc 153, 155, 174, 175, 205
advanced settings 126
ae (see also azimuth and elevation) ... 20,

155, 156
aet...................................... 235, 250, 251
aip.. 187, 240
air 232, 236, 237
ambient (see also light)............... 62, 126
analyze .. 156
anim_command................................. 157
anim_keyread.................................... 219
animmate................................... 149, 156
apply.................................. 6, 87, 89, 117
apropos.. 156
aproposdevel 157
aproposlib.. 157
arb (see arbitrary convex polyhedron)69,

157, 265
arb4 187, 196, 260
arb5 187, 196, 260
arb6 187, 196, 260
arb7 187, 196, 260
arb8 69, 94, 187, 196, 260, 261
arbitrary convex polyhedron 156, 157,

260
arbn ... 187
arced.. 157
area.. 158, 232
arot .. 159, 216
ars.. 187
articulation/animation 189
aspect................................. 205, 250, 251
assembly (see also group and

combination......... 38, 44, 45, 133, 144
asymptote 263, 264

attach ... 159
attr ... 160
autosize ... 231
autoview.. 160
axes 18, 20, 158, 236
axis 18, 155, 174, 262
azimuth.................... 15, 18, 19, 155, 250
B ... 152
background color 53, 111
bev... 161, 227
bindings............................... 21, 152, 159
blast ... 33, 34
blocking... 244
boolean....... 31, 37, 38, 51, 71, 132, 157,

164, 166, 180
bot_condense..................................... 161
bot_decimate 161
bot_face_fuse 162
bot_face_sort..................................... 162
bot_vertex_fuse................................. 163
brightness 64, 126
BRL-CAD.......................... iii, v, 31, 157
build_region 163
bump ... 124, 197
c ... 163
camera ... 13
cancel (see also dismiss, reject, and

reset).. 117
cat .. 164
center... 164
checker 100, 124, 197
checkerboard 197, 222
classic.. 150, 232
clear (see also blast, fbclear, and zap) . 6,

14, 33, 35, 36, 153
close (see also exit and quit).... 117, 169,

215, 241
cm.. 230
cmd_win.................................... 240, 241
collaborate......................... 240, 241, 242
color 34, 56, 74, 124, 246, 247
color (see also rgb)..... 32, 101, 139, 152,

268

165, 166, 176, 177, 209, 233, 234
comb (see also combination) 52, 133,

164, 166, 184, 213, 215
combination (see also assembly and

group).................. 38, 44, 45, 163, 166
combination editor 42, 61, 71, 74, 87,

89, 91, 125
command line.. 1, 4, 8, 20, 107, 108, 255
command window.... 1, 3, 6, 7, 8, 12, 13,

23, 28
complex................... 37, 38, 39, 113, 119
con... 174, 175
cone 72, 187, 196
constrain (see also shift grip) 21, 50
constructiveii, iii, 37
conventions (see also naming

conventions).......................... 9, 23, 29
coordinate................ 11, 13, 18, 232, 236
copy (see also cp) 50, 104, 137, 199, 208
copyeval 149, 166, 167
copymat..................... 149, 167, 208, 222
cosine .. 227
cp (see also copy). 50, 73, 104, 137, 149,

167
cpi.. 149, 167
create (see also make and insert) 3, 6,

23, 25, 48, 115
cursor (see also mouse)...... 6, 7, 49, 153,

155, 174, 232
curves .. 180
cut.............................. 115, 131, 136, 139
cutaway 130, 136, 139
cylinder (see also right circular cylinder,

right hyperbolic cylinder, and right
parabolic cylinder) 77, 87, 187, 196

d ... 167
dall... 168
database.......... 2, 3, 4, 6, 8, 71, 168, 169,

179, 180, 190, 191, 201, 226
db... 168
db_glob ... 170
dbbinary .. 169
dbconcat 149, 170, 171, 176
deactivate .. 72
debugbu... 171

debugdir .. 171
debuglib... 171
debugmen.. 172
debugnmg.. 172
decompose... 172
delay.. 173
delete (see also erase and kill) 6, 8,

9,168, 180, 233, 234, 250, 255, 256
dents .. 108
deprecated 187, 206
diffuse reflectivity................... 61, 62, 67
dismiss (see also cancel, reject, and

reset)...................................... 117, 160
distadc ... 192
dlist.. 231
dm ... 173, 247
dragging 13, 173
draw...... 5, 6, 33, 34, 152, 153, 175, 176,

184, 233
draw grid 104, 110
dsp ... 187, 265
dup... 176
e ... 176
E ... 152
e_muves .. 182
eac ... 176
ebm.. 187
echo ... 177
edcodes...................................... 149, 177
edcolor....................... 149, 165, 177, 204
edcomb...................................... 149, 178
edgedir... 178
edit.... 20, 21, 22, 49, 87, 88, 89, 95, 104,

116, 118, 177, 178, 213, 226
edmater...................................... 149, 178
ehy (see elliptical hyperboloid)......... 188
elevation. 15, 16, 19, 155, 157, 235, 250,

251
ell (see ellipsoid) 187
ellipsoid......... 7, 134, 187, 196, 259, 261
elliptical hyperboloid 188, 196, 263
elliptical paraboloid 188, 196, 264
elliptical torus.. 51, 79, 95, 188, 196, 263
em.. 179
emacs... 2, 8, 255

269

emission (see also light)...................... 62
environment 21, 117, 197, 213, 226
envmap.. 197
epa (see elliptical paraboloid) 188
eqn... 178
equation............................. 178, 179, 182
erase (see also delete and kill) 6, 139,

167, 168, 179, 180
eto (see elliptical torus)....................... 51
ev... 180
exit 9, 29, 150, 180, 181
expand... 181
export_body 181
extinction (see also light).. 61, 62, 64, 67
extrude....................... 149, 181, 196, 265
eye 155, 164, 181, 182, 194, 200, 210,

232, 235, 236, 250, 251
eye_pt................ 149, 181, 182, 194, 220
facedef....................................... 149, 182
faceplate 173, 231
facetize .. 183
fbclear (see also zap) 35, 36, 85
fbmbump... 197
fbmcolor.. 197
fbserv... 232
find .. 183
fmt ... 209, 210
foci .. 187, 261
font .. 83, 207
fracture .. 183
framebuffer 34, 35, 36, 232
g ... 183
garbage_collect 184
geometry 11, 232
geometry window (see graphics

window) .. 1
get_comb... 242
get_dm_list.. 242
get_edit_solid.................................... 240
get_more_default 240, 242
gift ... 245
glass............................... 63, 71, 124, 197
glob_compat_mode........................... 165
glossier (see also light) 62
graphical user interface .. 2, 3, 4, 5, 6, 87,

88, 117, 184, 231, 241, 243, 248
graphics window 1, 2, 4, 5, 6, 11, 12,

13, 33, 35, 36, 89, 124
grid2model_lu 242
grid2view_lu 242
group (see also assembly and

combination) 38, 45, 133, 183
gui ... 184, 243
gui_destroy................................ 240, 243
help.. 124, 184
helpdevel ... 185
helplib ... 185
hex_code 171, 172
hide.. 185
hierarchy (see also tree) 211, 231
hist..................................... 185, 186, 243
hist_add ... 186
history 9, 186, 243
hook... 240, 245
hook_cmd.. 245
horizontal (see also azimuth) 89, 154,

191, 192
host.................................... 159, 235, 236
hot_key.. 231
hv... 154
i ... 186
ident.......... 164, 165, 177, 178, 186, 188,

192, 204, 211, 214, 236, 237, 238
ident_number 188
idents ... 186, 237
ill ... 186
illuminate 186, 206, 240
in ... 187
inactive.. 35
inherit .. 33, 245
inmem ... 213
insert (see also create and make) . 23, 25,

29, 114, 233, 256
inside ... 188
interlay (see also framebuffer)...... 34, 35
intersection (see also boolean)..... 31, 38,

39, 40, 43, 44, 132, 211, 233
is_toplevel ... 159
item ... 188
joint ... 189

270

journal ... 189
keep ... 189, 190
keyframes.. 219
keypoint..................... 190, 203, 229, 232
keystrokes ... 8
keysym .. 231
keysymdef ... 231
keyword..................................... 156, 157
kill (see also delete and erase) 8, 149,

168, 179, 180, 190, 191
killall ... 190, 191
killtree 190, 191
knob................... 153, 174, 191, 192, 248
l ... 192
l_muves 149, 195, 213
labelvert..................................... 149, 193
language .. 107
libbu .. 171, 172
library................ 151, 152, 157, 185, 194
librt.. 171, 172
light 44, 62, 63, 64, 101, 124, 126,

197, 237
list..... 7, 8, 189, 192, 195, 225, 227, 229,

231, 234, 243
lm .. 193
loadtk... 149, 194
local2base.................................. 223, 224
lookat... 194
los................ 80, 164, 178, 188, 214, 245
ls (see also list).............. 8, 150, 194, 225
M... 152
make (see also create and insert) ... 5, 23,

25, 196, 197, 244
make_bb.................................... 149, 197
make_name 240, 243, 244
mater (see also material) 32, 33, 83,

165, 197, 205, 216, 221, 238
material 31, 37, 45, 83, 130, 164,

177, 178, 186, 188, 192, 214, 236
material_code.................... 178, 188, 214
matpick.. 198
matrix 158, 188, 198, 206
memdebug... 172
memprint ... 198
menu................ 6, 14, 41, 51, 87, 95, 134

mged prompt ... 1
mged_update 244
midpoint .. 48
mirface 149, 198
mirror 59, 62, 124, 134, 197, 198, 199
mirror reflectance.......................... 58, 59
mmenu_get.. 244
mmenu_set .. 244
model2grid_lu 245
model2objview.................................. 224
model2view....................... 224, 240, 245
modes 20, 104, 110
mouse (see also cursor).. 20, 21, 89, 124,

152, 173, 174, 175, 232
mouse_behavior 232
move faces .. 94
mrot ... 149, 199
multipane..................................... 20, 104
mv ... 149, 199
mvall 149, 199, 205
name.. 41
naming conventions 29
nirt 149, 200, 209, 210, 235
n-manifold geometry........ 161, 183, 200,

222, 232, 265
nmg (see n-manifold geometry)........ 196
nmg_simplify 200
oed... 201
OK (see also accept and apply) 3, 34,

117
opaque ... 58
opendb....................................... 149, 201
operator 38, 39, 40, 41, 44, 46, 132
optical.. 63
orientation 5, 201, 220, 224
origin 151, 191, 232, 234, 235
orot 149, 201, 202, 206
oscale................................. 149, 202, 206
output_hook 245
overlay (see also framebuffer) 35, 202
p ... 202
parallelepiped............................ 188, 197
part (see particle)................................. 98
particle......................... 98, 188, 196, 264
path... 3, 4, 166, 168, 180, 186, 192, 193,

271

197, 201, 203, 221, 222, 240
pathlist... 203
paths .. 203
permute 149, 203
perspective 174, 218, 232
pigment (see also color)............ 101, 124
pixel .. 35
pl ... 203
plot 202, 203, 204
poly 149, 200, 204, 265
polybinout 149, 204
polyhedron .. 187
pov... 204
prcolor 149, 165, 177, 204
prefix 170, 172, 176, 183, 199, 205
press .. 205
preview.. 206
primitive.. 5, 37, 180, 183, 222, 238, 259
primitive editor...................... 49, 87, 105
primitive selection............................... 50
prj_add 205, 207
projection 124, 174, 207
prompt 1, 2, 4, 5, 150, 182, 187, 228
ps ... 207
push ... 207
put_comb... 245
putmat 149, 208, 222
q (see also quit)............................. 9, 208
qorot .. 149, 208
qray 149, 209, 210
quaternion 201, 235, 250, 251
query_ray 149, 210
quit (see also exit).... 1, 9, 180, 208, 210,

241
qvrot 149, 210, 211
r ... 211
rateknobs ... 231
raytrace.............. 31, 34, 42, 43, 218, 232
raytrace conrol panel............... 34, 35, 36
rcc (see right circular cylinder) 12
rcc-blend ... 211
rcc-cap... 212
rcc-tgc ... 212
rcc-tor .. 212
rcodes 149, 213, 236

read_muves 213
rec (see right elliptical cylinder) 187
rectangular parallelepiped.. 12, 114, 115,

188, 261
red ... 213
redraw_vlist....................................... 213
reflectance (see also light) 55, 59, 62, 64
refraction ... 63
refraction (see also light) 63
refresh ... 214
regdebug.. 214
regdef .. 214
region 31, 37, 40, 45, 130, 164, 178, 188,

192, 204, 211, 213, 214, 224, 236, 238
regions... 214
regular_expression 181
reject (see also cancel, dismiss, and

reset).................... 87, 88, 89, 189, 205
release 4, 115, 125, 152, 159, 215
rendering ... 83
reset (see also cancel, dismiss, and

reject) 49, 88, 117, 155, 246
reset_edit_solid 246
restore................................ 205, 208, 210
rfarb... 149, 215
rgb (see also color)........... 101, 165, 166,

178, 180, 210
rhc (see right hyperbolic cylinder) 188
right circular cylinder. 12, 23, 24, 26, 28,

29, 48, 87, 187, 196, 262
right elliptical cylinder 262
right hyperbolic cylinder... 188, 196, 264
right parabolic cylinder 188, 196, 264
rm .. 215
rmater 149, 215, 216, 238
rmats.. 216
rot .. 216
rotate 21, 73, 199, 202, 206, 209, 216,

217, 232, 236
rotobj 149, 201, 202, 216
rpc (see right parabolic cylinder) 188
rpp (see rectangular parallelepiped).. 188
rpp-arch ... 217
rpp-cap .. 217
rrt............................... 149, 217, 218, 219

272

rset... 246
rt ... 218
rt (see raytrace) 218
rtcheck............................... 149, 218, 219
rtrans ... 197
savekey...................... 149, 216, 219, 220
saveview.. 219
sca ... 220
scale........ 21, 49, 89, 100, 174, 192, 202,

206,223, 239
scene.................................... 44, 124, 126
sed ... 221
sedit ... 206
set H (see also scale)..................... 48, 87
set_more_default............................... 247
setview 149, 221
shader ... 32, 56, 61, 62, 66, 83, 124, 125,

 178, 197, 221, 222, 237, 238
shape (see primitive) 5
share .. 247
shell 2, 150, 188
shells ... 222
shift grip 13, 20, 21, 22
shininess (see also light) 62, 64
showmats........................... 149, 222, 223
size .. 222
snap ... 246
solid (see primitive) 5
solids ... 222
solids_on_ray 248
specular reflectivity........... 62, 63, 64, 67
sph (see sphere)..................................... 6
sphere 2, 5, 7, 24, 196, 259, 261
sph-part ... 223
spin (see also rotate) 6
square 157, 159, 220, 234
srot... 206
sscale ... 206
stack .. 197
stack (see also shader) 125
stacker 113, 124, 125, 127
status ... 223
stop (see also exit and quit) 6
stuff_str ... 248
subtract 141, 180

subtraction (see also boolean) 31, 38, 39,
40, 44, 132, 211

summary.. 224
sv ... 225
svb ... 240, 248
sxy... 206
sync ... 225
t ... 225
t_muves 149, 213, 229, 230
tabinterp .. 220
tec (see truncated elliptical cone)..... 187
ted.. 226
terminal window 1, 2, 11, 55
tessellation... 227
texture 124, 197, 198, 203
tgc...................................... 167, 262, 263
tgc (see truncated general cone)........ 187
tie... 248
title (see also naming conventions)...... 4,

207, 226
tol .. 226
tolerance............................ 158, 226, 227
tops.................................... 169, 227, 228
tor (see torus) 212
tor-rcc.. 228
torr-rcc... 228
torus..................... 12, 187, 188, 196, 263
tra .. 228
track... 228
translate .. 21, 70, 73, 153, 174, 202, 206,

228, 229
transmissive (see also light)................ 64
transparency 58, 59, 62, 63, 197, 198
trc (see truncated right cone)............... 72
tree... 52, 229
triangle .. 200
truncated elliptical cone 262
truncated general cone 167, 187, 196,

200, 262
truncated right cone........... 187, 196, 263
tty (see terminal window) 1
twist............. 15, 155, 211, 235, 250, 251
underlay (see also framebuffer) ... 34, 35,

134
undo....................................... 8, 190, 191

273

union (see also boolean) .. 31, 38, 40, 46,
132, 211, 232

units......... 5, 77, 165, 191, 223, 230, 231
variable...................................... 173, 231
vdraw... 233
vector..................................... 25, 26, 262
view... 234
view size......... 13, 14, 15, 194, 196, 223,

224, 231, 235
view_ring .. 249
view2grid_lu 249
view2model....................................... 249
view2model_lu.................................. 249
view2model_vec 249
viewget.. 250
viewing cube 155, 164, 222
viewset 240, 251
viewsize............................. 149, 220, 235
visible................................ 136, 139, 164
vnirt ... 235
vquery_ray .. 235

vrmgr................................. 149, 235, 236
vrot .. 149, 236
wcodes... 236
whatid.. 236
which_shader 237
whichair... 237
whichid.. 237
who.. 237
winset .. 251
wireframe 35, 36, 43
wish ... 29, 220
wmater....................................... 215, 238
wood.. 198
x ... 238
xpush... 238
xrot .. 236
Z ... 153
zap (see also blast, clear, and fbclear) . 6,

14, 191
zoom...................... 14, 15, 206, 232, 239

274

NO. OF
COPIES ORGANIZATION

1 DEFENSE TECHNICAL INFORMATION
CENTER
DTIC OCA
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOIR VA 22060-6218

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
R W WHALIN
2800 POWDER MILL RD
ADELPHI MD 20783-1197

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
D SMITH
2800 POWDER MILL RD
ADELPHI MD 20783-1197

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AI R
2800 POWDER MILL RD
ADELPHI MD 20783-1197

2 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AP
2800 POWDER MILL RD
ADELPHI MD 20783-1197

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL SL
C HOPPER
WSMR NM 88002-5513

1 NAWC
WEAPONS DIVISION
CODE 418300D A WEARNER
BLDG 91073
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

1 NSWC
DAHLGREN DIVISION
CODE G24 T WASMUND
17320 DAHLGREN RD
DAHLGREN VA 22448-5100

NO. OF
COPIES ORGANIZATION

1 USAF
46 OG OGMLV
B THORN
104 CHEROKEE AVE
EGLIN AFB FL 32542-5600

1 USAF WRIGHT LABORATORY 46TH OG
OGM AL AC
M LENTZ
2700 D STREET BLDG 22B
WRIGHT PAT AFB OH
45433-7605

1 SURVIAC
ABERDEEN SATELLITE OFC
A LAGRANGE
1003 OLD PHILADELPHIA RD
SUITE 3
ABERDEEN MD 21001

5 THE SURVICE ENGNRG CO
D KREGEL
B STRAUSSER
C BOYER
M HARDIN
M BUTKIEWICZ
1003 OLD PHILADELPHIA RD
SUITE 3
ABERDEEN MD 21001

ABERDEEN PROVING GROUND

4 DIR USARL
AMSRL CI LP (305)

220 DIR AMSRL
AMSRL SL

DR WADE
J BEILFUSS

AMSRL SL E
M STARKS

AMSRL SL EC
E PANUSKA

AMSRL SL EM
J FEENEY

AMSRL SL B (5 cps)
AMSRL SL BA (25 cps)
AMSRL SL BD (15 cps)
AMSRL SL BE (25 cps)

L BUTLER (100 cps)
AMSRL SL BG (25 cps)
AMSRL SL BN (20 cps)

275

Intentionally Left Blank

