
1

BRL-CAD Database Format
Version 5 (DRAFT)

Lee A Butler
Michael John Muuss
Paul J Tanenbaum
John R Anderson
Robert G Parker
Ronald A Bowers

Christopher T Johnson
Eric W Edwards

Table of Contents
Background and Terminology ... 1

Format of Data Elements/Database External Format .. 2
Definition of a Single, Generic Database Object .. 2

Object Structure ... 2
Flags .. 4
Object Type .. 6
Object Length .. 11
Object Name .. 11
Object Attributes .. 12
Object Body .. 13
Padding and Length Rounding .. 13
How Objects Are Grouped into a Database .. 15
Details of BRL-CAD-Specific Nongeometric Database Object Types 15
Details of BRL-CAD-Specific Geometric Database Object Types 15
Extensions for Deferred Implementation ... 15
Community Feedback on the Proposal .. 15
Database Library Application Programming Interface (API) .. 15

BRL-CAD software uses its own binary file format to store the geometric information and other properties required
to define CAD models. BRL-CAD used its version 4 (v4) binary ".g" database format for over 10 years, but a variety
of long standing issues with that format prompted the development of version 5. Issues addressed by the new format
include a machine-independent format, expanding the upper limit of numbers to double precision floating point, and
lifting a 16 character size limit on object names.

Background and Terminology
BRL-CAD is a constructive solid geometry (CSG) modeling system. Primitive solid shapes are combined
using boolean operations to form regions of homogeneous material.

The database is organized as a directed acyclic graph (DAG), which comprises

• primitive solids - the minimal elements of the DAG.

BRL-CAD Database Format

2

• combinations - the nonminimal elements of the DAG, some of which are specially marked as regions.
The maximal elements of the DAG are called tops.

• arcs - contain boolean operators and 4x4 homogeneous transformation matrices.

In a slight abuse of terminology, the DAG is often spoken of as a tree or collection of trees. In this context,
the solids are also called leaves.

Format of Data Elements/Database External Format
The external format has several important properties, especially with regard to the Object_Body:

• Numbers are stored in binary for storage efficiency, for speed of reading and writing, and for preventing
errors from creeping in due to repetitive conversion between binary and an ASCII string representation.
This eliminates the need to use the old g2asc and asc2g to move databases between machines of different
architectures.

• All data in the object wrapper are stored in a machine-independent format, as follows:

• All floating point numbers are stored as IEEE double-precision, in big-endian order, where byte 0
is on the left end of the word.

• All integers are stored as either unsigned or twos-complement signed binary numbers in either 8, 16,
32, or 64 bits, in big-endian order.

• All character strings are stored in the ASCII 8-bit character set. A string is stored as an integer
followed by an array of 8-bit characters. The last character in the array is always a null byte. The
integer indicates the number of bytes in the array including the terminating null.

Definition of a Single, Generic Database Object
The database access library stores objects as a collection of data with a globally unique name and places no
interpretation on the content of those data. The object is the smallest granularity of an item in the database;
objects must be read from and written to the database in a single atomic operation.

In the case of librt, each database object will contain exactly one combination node or leaf (solid) node.

Object Structure
All objects share certain common properties, which are stored in a standardized object wrapper consisting
of an Object Header and an Object Footer.

The Object Header consists of:

• An 8-bit Magic1 element that holds a specific magic number value used for database integrity checking.

• A 16-bit Flags element consisting of three 8-bit fields: HFlags, AFlags, and BFlags, described later.

• A 16-bit Object_Type element organized into two 8-bit-wide fields: the Major_Type and the
Minor_Type.

• An Object_Length element that indicates the total number of bytes required for this object, including
the magic numbers.

• An Object_Name element that is a string holding a name unique to that object and drawn from a name
space that is global to the database. Like other strings, it consists of two fields, Length and Data. In the

BRL-CAD Database Format

3

case of the Object_Name element, these are referred to as Name_Length and Name_Data, respectively.
Note: The Object_Name element is mandatory for all allocated storage in the database. Database free-
space managment objects are the only objects for which the Object_Name element is optional.

The Object Footer consists of:

• Any padding bytes necessary to bring the total size of the object in bytes to an integral multiple of 8.

• An 8-bit Magic2 element that holds a specific magic number value used for database integrity checking.

Objects may store application-specific information in an Object Interior.

• An object may optionally have an Object_Attributes element consisting of a pair of fields:
Attribute_Length and Attribute_Data. From the point of view of the database interface specification,
the names and values of these attributes are opaque????; a standardized import/export encoding API
will be provided.

• An object may optionally have an Object_Body element consisting of a pair of fields, Body_Length
and Body_Data. From the point of view of the database interface specification, the format of the data
is opaque??.

The on-disk version of each object consists of three distinct parts: Object Header, Object Interior, and
Object Footer. This is called the external format of the object.

Table 1. On-Disk BRL-CAD Object Structure

Part Element Comments

Magic1

HFlags, AFlags, BFlags

Object_Type

(Major_Type, Minor_Type)

Required

Object_Length Required

Object Header:

(not compressible)

Object Name: Name_Length

Name_Data

Conditional on flag bit N,

Required for Application Data

Object
Attributes:

Attribute_Length

Attribute_Data

Conditional on flag bit A

(ZZZ compression)Object Interior:

(individually compressible) Object Body: Body_Length

Body_Data

Conditional on flag bit B

(ZZZ compression)

Padding As required to maintain 8-byte

object boundaries
Object Footer:

(not compressible)
Magic2 Required

????Need a description that says that an object can now have (1) EITHER an attribute OR a body, (2)
BOTH an attribute and a body, or (3) NEITHER an attribute nor a body.

The routines db_get_external() and db_put_external() are used to move objects in external format between
memory and the database disk file. The routines db_wrap_external() and db_unwrap_external() are used to

BRL-CAD Database Format

4

wrap and unwrap the (??? Object_Body or Object_Interior ???) (already in external form) in a standardized
database object's wrapper.

Flags
The Flags element consists of three 8-bit fields: HFlags, AFlags, and BFlags. The HFlags field is 1 byte
containing flag bits that pertain to the noncompressible basic header and the database object as a whole.
The AFlags and BFlags fields are each single bytes containing flag bits that pertain to the (potentially
compressed) attributes and body, respectively, in the object interior.

Table 2. BRL-CAD Flags Structure

HFlags AFlags BFlags

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Wid N Wid r DLI Wid P r r ZZZ Wid P r r ZZZ

Wid Flags

The length of an object or subelement in the database is recorded using an unsigned integer. These are
variable-width fields based on the magnitude of the maximum number needed. The Wid bits specify the
size of the unsigned integer employed in each instance. There are four 2-bit width (Wid) flags: Object_Wid
and Name_Wid (stored in HFlags), Attribute_Wid (stored in AFlags), and Body_Wid (stored in BFlags).
The Wid fields are interpreted in this manner:

Table 3. Wid Flag Definitions

Wid Bits Width (in bits) of Associated Length Fields

00 8

01 16

10 32

11 64

The Object_Wid flag, at the high end of HFlags, encodes the width of the Object_Length field. The
Name_Wid flag, in bits 3 and 4 of HFlags, encodes the width of the Name_Length field (when the name
element is present; see the N bit, shown later.). Attribute_Wid (or Body_Wid, as the case may be) encodes
the width of the Attribute_Length field (when the Object_Attributes (or Object_Attributes) element is
present. http://ftp.arl.mil/~mike/papers/brlcad5.0/newdb.html - bbitSee the P bit, below.)??????????.

The rationale for allowing the width of the Object_Length field to be specified independently of the other
widths is to save space on objects in which the values in many of the length fields nearly overflow the
specified field width, so that their sum requires a wider field. For example, for four 255-byte interior
fields, the corresponding length fields need be no more than 8 bits wide, so the choice Interior_Wid=00
suffices, but their combined length of 1020 bytes would require Object_Wid=01. Because all of the length
fields besides Object_Length must have the same width, the largest of the values stored in these length
fields determines the value of Interior_Wid required. Both Object_Wid and Interior_Wid may vary from
object to object. It is expected that the routines that write an object to the disk will use the narrowest width
possible for each object.

"r" Bits

The bits labled as "r" in all three flags are reserved for future design work assigning additional optional
fields in the object.

BRL-CAD Database Format

5

HFlags - the DLI Flag

The DLI flag is a 2-bit flag that indicates whether the object is an Application Data Object or a Database
Layer Internal Object. The bits are interpreted as follows:

Table 4. DLI Flag Structure

DLI Bits Meaning

00 Application Data Object

The object contains application-specific data. N must
be 1. A and B are determined by what the application
presents for storage in the object; both may be 0 (empty
Object_Interior).

01 Database Layer Internal, Header Object

A Header Object must be the first object encountered
in the database. In order to support direct concatenation
of two existing databases into one new database,
additional header objects may appear elsewhere in
the database The header object has no object name,
object attributes, or object body (e.g., N=0, A=0, B=0).
Major_Type=RESERVED, Minor_Type=0.

10 Database Layer Internal, Free Storage.

Unused space in the database is kept using a special
Free DB Storage object that has no object name or
object attributes. The object body is null-filled and
of the proper size for the storage to be represented.
Like all other objects, the total length of the object
will be a multiple of 8 bytes. N=0, A=0, B=1.
Major_Type=RESERVED, Minor_Type=0.

11 Database Layer Internal, Reserved

This value is reserved for future use.

The DLI flag is not available to the higher database access layers.

Note

Implementation note: Before writing a new object into the database in a free area, the library
should read the object header from the database and confirm that the space is indeed free.
Similarly, additions to the end should be checked by ensuring that the file hasn't been extended.
In case the check fails, the database write should fail, the user should be notified, and the internal
library mode (not the operating system file access permissions) should be changed over to read-
only access so that no further attempts to write will be issued. These checks will provide protection
against two or more users trying to modify the same database simultaneously and accidentally
stepping on each other. In the NFS world, file locking isn't a strong enough assurance.

HFlags - the N Bit

The "N" bit indicates whether the Name element (consisting of Name_Length and Object_Name fields) is
present (1) or absent (0) in the noncompressible basic header immediately following the Object_Length
field. The width of the Name_Length field is specified by the Name_Wid field.

BRL-CAD Database Format

6

AFlags/BFlags - the P Bit

The ``P'' bit indicates whether the Attributes (or, alternatively, Body) element consisting of
Attribute_Length and Attribute_Data (or Body_Length and Body_Data) fields, is present (1) or absent (0)
in the Object_Interior.

AFlags/BFlags - the ZZZ Flag

The 3-bit ``ZZZ'' flag indicates the compression, if any, of the object Attributes (or Body):

Table 5. ZZZ Flag Definitions

ZZZ Bits Compression Algorithm

000 None

001 GNU GZIP

010 Burroughs-Wheeler

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Object Type
The Object_Type element is always 16 bits wide, organized into two 8-bit-wide fields: the Major_Type
and the Minor_Type.

Table 6. Object_Type Element Structure

Object_Type

Major Type Minor Type

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Each different Major_Type value is assigned to a different class of database objects. The following values
are defined in this specification:

Table 7. Major_Type Values and Meanings

Value Object Class

0 Reserved

1 BRL-CAD Nongeometry Objects

2 BRL-CAD Geometry Objects

3 Attribute-Only Objects

8 Experimental Binary Objects (Unrecorded
Structure) (Minor Type Unspecified)

9 Uniform Array Binary Objects,
(Type Described in Minor Type)

BRL-CAD Database Format

7

Value Object Class

10 MIME_Typed Binary Objects (Attribute
"mime_type" Describes Format)

16-31 Registered-Type Binary Objects

128 First Non-ARL Type Begins Here

The remainder are available for extending the types of objects that may be stored in the database, allowing
BRL-CAD users to extend the database for their own particular purposes far beyond what the "attribute"
method permits.

Major_Type = 0: Reserved
Major Type 0 is illegal. The rationale is to provide the library an opportunity to detect incompletely filled
in data structures.

Major_Type = 1: BRL-CAD Nongeometry Objects
This class of objects is private to librt, concerning all nongeometric objects needed by the library. For this
Major_Type, the following Minor_Type values are defined:

Table 8. Major_Type = 1: Minor_Type Values and Meanings

Minor_Type Value Object Type

0 Reserved for sanity check

1 Combination

2 Grip (Nongeometric)

3 Joint (Nongeometric)

All other values reserved for future expansion.

?????Should "Grip" and "Joint" objects be of this type, or Major_Type = 2?

Major_Type = 2: BRL-CAD Geometry Objects
This class of objects is private to librt, concerning all geometric objects needed by the library. Typically,
there will be one xxx/xxx.c module in librt for each minor type. For this Major_Type, the following
Minor_Type values are defined:

Table 9. Major_Type = 2: Minor_Type Values and Meanings

Minor_Type Value Object Type

0 Reserved for sanity check

1 Torus (TOR)

2 Truncated General Cone (TGC)

3 Ellipsoid (ELL)

4 Generalized ARB. V + 7 vectors

5 ARS

6 Half-Space (HALF)

7 Right Elliptical Cylinder
(REC) (TGC special case)

BRL-CAD Database Format

8

Minor_Type Value Object Type

8 Polygonal facted object (Polysolid)

9 B-Spline Solid

10 Sphere (ELL Special Case)

11 n-Manifold Geometry (NMG) solid

12 Extruded bitmap solid

13 Volume (VOL)

14 ARB with N faces (ARBN)

15 Pipe (wire) solid (PIPE)

16 Particle system solid (PART)

17 Right Parabolic Cylinder (RPC)

18 Right Hyperbolic Cylinder (RHC)

19 Elliptical Paraboloid (EPA)

20 Elliptical Hyperboloid (EHY)

21 Elliptical Torus (ETO)

22 Grip Nongeometric

23 Joint Nongeometric

24 Height Field (HF)

25 Displacement Map (DSP)

26 2D Sketch (SKETCH)

27 Solid of extrusion (EXTRUDE)

28 Instanced submodel

29 FASTGEN4 CLINE solid

30 Bag o' triangles (BOT)

31 Combination Record

32 Experimental binary

33 Uniform-array binary

34 MIME-typed binary

35 Superquadratic ellipsoid

36 Metaball

37 Brep object

38 Hyperboloid of one sheet (HYP)

39 Constraint object

40 Solid of revolution

41 Collection of points (PNTS)

The details of these Minor_Types are provided in Section IV.

Major_Type = 3: Attribute-Only Objects

This type of object stores only attributes in the object interior section; it has no object body elements.

BRL-CAD Database Format

9

For example, if several objects need to have the same shader parameters, it would be possible to create
one attribute-only object to hold these common attributes and serve as a simple form of "macro". Objects
that needed to share these attributes could all reference the same attribute object. If the attribute object is
altered, then all of the objects that reference it would be updated together. Without this capability, the user
would have to update each element individually to alter the attributes.

Conventions will have to be established regarding which attributes of an attribute-only object will be used
when a macro reference is performed. For example, rt shaders will only be interested in the value of the
"oshader=" attribute, while librt's tree-walker might also be interested in the "rgb=", "giftmater=", "nsn=",
"material=", and "los=" attributes (assuming that a convention was developed so that a combination could
macro-reference an attribute-only object too).

An attribute-only object may not have an object body; thus, flag bit B must always be zero for this type
of object.

As used by the rt family of applications codes, these attribute-only objects will contain "macros" for
shaders. The shader name and its parameters shall be encoded as a single ASCII string, which is the value
of the "oshader=" attribute. An rt shader named "macro" (or equivalent) would take a single parameter
"obj=", which would specify the name of the attribute-only object in the database from which the actual
shader and shader parameter information would be extracted.

There will be one attribute-only object with a reserved object name of "_GLOBAL" that will be used to
contain various kinds of states that are global to the entire ".g" database and that had previously been found
in the database header itself. There will be the following BRL-CAD-specific attributes whose meaning is
predefined for the _GLOBAL object:

• title = The database "title" string previously found in the database header.

• units = The most recent editing units, specified as an ASCII string with a floating point conversion
factor. For example, the conversion factor for inches to millimeters would be 25.4.

• regionid_colortable = A string that contains a collection of all the information previously found in "struct
material_rec ID_MATERIAL" records. Exact encoding yet to be determined; it's a collection of integer
5-tuples of the form: {low, high, r, g, b}.

In addition, the "comment=" attribute of the "_GLOBAL" object may be used to store human-readable
remarks about the database that are not more properly associated with a specific database item. These
might include remarks about data sources, model evolution, security classification, and release restrictions.
In the absense of some outboard revision-control system, this might also be a place to record modification
history, although such use is discouraged.

Bulk Binary Objects (Major_Types 8-31)

This class of objects contains various "bulk" binary data that might otherwise have been placed in auxiliary
files.

MGED and standalone commands must be built to store/extract these opaque?? binary objects between a
".g" file and stdin/stdout/auxiliary files. A user might want to use those same MGED commands to store/
extract the binary object body of any object for external processing. An easy example to imagine is the
importing and exporting of texture maps for external processing, but the same commands could be used
for importing and exporting solid parameters in their external binary form.

These objects may be referenced in combination nodes, for organizational purposes, but they cannot be
drawn in MGED or raytraced, and doing so would result in a warning message being printed by the tree
walker as that arc is traversed. This class may be used by all applications and layers.

BRL-CAD Database Format

10

The data's purpose may be placed in the "purpose=" attribute. (????????Need a table/registry of presently
known values for this attribute.)

Routines that retrieve bulk binary objects should check the minor type and the "purpose=" attribute and
send a warning message in the event of a mismatch, but best-effort processing of the object should continue.
This will permit some degree of error checking, which should benefit novice users without standing in the
way of "creatively" reusing one set of data, (e.g., using one array of values as both a height field and a
bwtexture). This allows common data perversion practices, such as interpreting an array of floats as an
array of bytes, to continue.

Each application will need to have its own syntax for the user to specify whether the data source is an
outboard file or a raw-binary object. For example, the current RT sh_texture module uses the keyword
file="name" to indicate an outboard file; that might be supplemented with an additional obj="name"
possibility for retrieving from an inboard raw-binary object.

Major_Type = 8: Experimental Binary Objects

This class of objects contains bulk binary data and is intended for experimental use by applications
developers. Each time a database containing objects of this type is opened, BRL-CAD will issue a user-
visible warning. Production software and databases should not use these objects. Developers should obtain
registered 16-bit object types from the website in order to avoid collisions with other applications.

Major_Type = 9: Uniform Array Binary Objects

This class of objects contain various "bulk" binary data that might otherwise have been placed in an
auxiliary file.

Point of Discussion?????Has ramifications... we have to implement type advising, so that applications that
use these data can compare the type provided in the minor type code with the type that they're expecting
and advise the user (with a warning message) that there is a potential type mismatch.

Table 10. Uniform Array Binary Objects Minor_Type Structure

Minor_Type

7 6 5 4 3 2 1 0

r r Wid S Atom

The 3-bit ``Atom'' flag indicates the fundamental data type of the atomic elements in the array according
to the following scheme:

Table 11. Atom Flag Definitions

Atom Bits Data Type

000 Reserved for sanity check

001 Reserved

010 float (IEEE, network order)

011 double (IEEE, network order)

100 8-bit int

101 16-bit int

110 32-bit int

111 64-bit int

BRL-CAD Database Format

11

The ̀ `S'' bit indicates whether an integer type is signed (1) or unsigned (0). Floats and doubles (i.e., atomic
types with the highest atom bit equal to 0) are explicitly signed, so they will have the ``S'' bit equal to 1.
(The bit patterns corresponding to unsigned floats and doubles are reserved for possible other use.)

The 2-bit ``Wid'' flag specifies the length (in atomic elements) of the array elements:

Table 12. Wid Flag Definitions

Wid Bits Atoms per Array Element

00 1

01 2

10 3

11 4

The remaining Minor_Type bits ``r'' are reserved for the design committee to use for other purposes,
possibly including extensions of the ``Atom'' and/or ``Wid'' flags.

As examples, data in PIX(5) format, which might be used for a texture map, would have Minor_Type
``0010 0100'', indicating a triple of unsigned char, and CMYK data might be stored with Minor_Type
``0011 1011'', indicating a quadruple of doubles.

The data's purpose (e.g., height field, texture, bump, displacement, etc.) may be placed in the "purpose="
attribute. ?????Point of Discussion???(Need a table/registry of presently known values for this attribute.)

Major_Type = 10: MIME-Typed Binary Objects

This class of objects contains data, the format of which is specified in the attribute "mime_type". The
Minor_Type of these objects should always be zero.

Major_Type = 16-31: Registered-Type Binary Objects

This class of objects contains application-specific bulk binary data and is intended for use in production
software and databases. Developers can obtain registered 16-bit object types from the website to identify
these objects. The data's purpose, (e.g. height field, texture, bump, displacement, etc.) may be placed in
the "purpose=" attribute. (Need a table/registry of presently known values for this attribute).

Major_Type = 255: Database Layer Internal Objects

A Minor_Type of 1 indicates that this is a contiguous block of free storage.

A Minor_Type of 2 indicates that this is a database header.

Object Length
The Object Length specifies the number of 8-byte chunks used to store an object. This includes all bytes
from Magic1 through Magic2, inclusive.

Object Name
The Object_Name element is a string that holds a name unique to that object and drawn from a name
space that is global to the database. The Object_Name element is mandatory for all allocated storage in
the database. Database free-space managment objects are the only objects for which the Object_Name
element is optional.

BRL-CAD Database Format

12

The name is specified in 8-bit ASCII. There is no support for UNICODE. The name is null-terminated,
and the null byte is included in Name_Length.

See the section on DLI flags. In the case of Free objects, the name is not retained. Undeleted objects have
a different DLI flag code.

Object Attributes
An object may optionally have an Object_Attributes element, which stores an association list

aname1=value1, aname2=value2, ..., anameN=valueN

binding attributes to values.

These are ASCII strings of unlimited length. These attributes are intended for direct use by programs.
There will be a WWW registry of attribute names presently in use to prevent two application developers
from using the same attribute_name for different purposes.

For attribute names and attribute values, The decision was taken to support 8-bit ASCII only. The on-disk
encoding of this will simply be:

aname1 NULL value1 NULL ... anameN NULL valueN NULL NULL

where NULL represents a byte with all bits zero. The NULL in place of anameN+1 signals the end of the
attribute data, simplifying the job of the reader.

Every object in the database may have zero or more attributes attached to it; the meaning of these attributes
will vary depending on which application or library processes them.

There are several aname conventions that all BRL-CAD applications are expected to respect. There will be
a WWW extendable registry of "in-use" anames, so that independent applications developers may select
aname strings for their own use without fear of name conflicts later. The initial registry would include:

• comment = Every object may optionally have a comment that contains a string of an arbitrary number
of newline-terminated lines of text. These are strings for use by humans only. None of the BRL-CAD
software may parse or interpret these strings other than to print them and edit them when requested by
the user. They are provided for the modeler to place notes in.

• nsn = The American National Stock Number (NSN) for this part, when known.

• material = The format of this string is not currently defined as there are conflicting naming/coding
conventions employed by the various standards organizations (e.g., ISO, ASME, etc.).

• region = For combinations, indicates this combination is a region. Boolean.

• inherit = For combinations, indicates whether attributes from lower combinations in tree will replace
higher ones. Boolean, default=0.

• oshader = For combinations, read by the "rt" program, optical shader name and parameter string
(separated from each other by white space). Meaningful only at or above a region node, and only on a
combination, or in an attribute-only "macro".

• rgb = For combinations, when present indicates optical rgb color is specified.

BRL-CAD Database Format

13

• region_id = For regions, GIFT compatability. Integer.

• giftmater = For regions, GIFT compatability. Integer. (Point of Discussion?????Should we use negative
values for air codes, positive for nonair, so we can eliminate air codes?)

• aircode = For regions, air code. Integer. 0 is the same as attribute not specified. (Point of Discussion?????
Possibly eliminated in favor of negative giftmater values).

• los = For regions, GIFT compatability. Integer.

• component = For regions, the name of the MUVES component containing this object.

• rlist = The proposed BRL-CAD "replacement list" field would be stored on a binary-block attribute
("rlist="). [deferred implementation]

• macro = If present, specifies name of an attribute-only object to be consulted for additional attribute
values.

All other attributes, from whatever source, would be stored similarly, including application-specific and
end-user-created attributes.

Object Body
The contents of the Object Body are opaque?? to the databaase layer. The contents of this element are
interpreted based upon the Object_Type. The Object_Body is not constrained to start on a chunk boundary.

Padding and Length Rounding
The minimal object is a Free object (with no name) 8 bytes long:

 Magic1 (1byte)
 HFlags = 000xxxxx (1 byte)
 AFlags = 0000xx00 (1 byte)
 BFlags = 0000xx00 (1 byte)
 ObjType = Free (2 bytes)
 ObjLen = 7 (1 byte)
 Magic2 (1 byte).

This is why we have chosen the 8-bit size for our chunks. Pad bytes are inserted as necessary in the Object
Footer immediately before the second magic number so that the final byte of the object is the Magic2 byte.
The pad bytes are not counted as part of the Body_Length, but are counted as part of the Object_Length.

The minimal valid object is thus the following Free object:

Magic1 (1byte)
HFlags = 00000010 (1 byte), Wid=00, N=0, DLI=02
IFlags????? = 00000000 (1 byte), Wid=00, A=0, B=0, ZZZ=000
Object_Type = RESERVED (2 bytes)
Object_Length = 1 (1 byte)
Pad (1byte)
Magic2 (1 byte).

BRL-CAD Database Format

14

The header of the database will always look like this:

Magic1 (1byte)
HFlags = 000xxx01 (1 byte), Wid=00, N=0, DLI=01
IFlags????? = 0000x000 (1 byte), Wid=00, A=0, B=0, ZZZ=000
Object_Type = RESERVED (2 bytes)
Object_Length = 1 (1 byte)
Pad (1byte)
Magic2 (1 byte)
The hex and ASCII dump of this object would look something this:

76 01 00 00 00 01 00 35 |v......5|

The minimal valid allocated database storage object (with an Object_Name, no Object_Attributes or
Object_Body) would thus be:

Magic1 (1byte)
HFlags = 001xxxxx (1 byte), Wid=00, N=1, DLI=00
IFlags ?????= 0000xxxx (1 byte), Wid=00, A=0, B=0, ZZZ=000
Object_Type = OPAQUE?????_BINARY (2 bytes)
Object_Length = 8 (1 byte)
Name_Length = 2 (1 byte)
Object Name (1 character + null byte) (2 bytes)
Pad (6 bytes)
Magic2 (1 byte).

Without the padding, this (rather useless) object would be 10 bytes long. Given the rounding requirements,
it is clear that all allocated storage objects in the database must be at least 16 bytes long. A database object
with a minimal Object_Body would need 12 bytes, which would need to be padded out to 16 bytes as well:

Magic1 (1 byte)
HFlags = 001xxxxx (1 byte)
IFlags???? = 00x1xxxx (1 byte)
Object Type (2 bytes)
Object Length = 16 (1 byte)
Name Length = 2 (1 byte)
Object Name (1 character + null byte) (2 bytes)
Body Length = 1 (1 byte)
Body Data (1 byte)
Pad (4 bytes)
Magic2 (1 byte).

BRL-CAD Database Format

15

How Objects Are Grouped into a Database

Details of BRL-CAD-Specific Nongeometric Database
Object Types

Details of BRL-CAD-Specific Geometric Database Object
Types

Extensions for Deferred Implementation

Community Feedback on the Proposal

Database Library Application Programming Interface
(API)

