HACKING
BRL-CAD

A Contributor’s Guide

Build your own reality with BRL-CAD

A Call to Arms (and Contributors)

"The future exists first in the imagination, then in the will, then in reality.” - Mike Muuss

Welcome to BRL-CAD! Whether you are a developer, documenter, graphic artist, academic, or someone who
just wants to be involved in a unique open source project, BRL-CAD has a place for you. Our contributors
come from all over the world and use their diverse backgrounds and talents to help maintain and enhance
one of the oldest computer-aided design (CAD) packages used in government and industry today.

What is BRL-CAD?

BRL-CAD (pronounced be-are-el-cad) is a powerful, cross-platform, open source solid modeling system that
includes interactive three-dimensional (3D) solid geometry editing, high-performance ray tracing support for
rendering and geometric analysis, network-distributed framebuffer support, image and signal-processing
tools, path tracing and photon mapping support for realistic image synthesis, a system performance analysis
benchmark suite, an embedded scripting interface, and libraries for robust high-performance geometric rep-
resentation and analysis.

For more than two decades, BRL-CAD has been the primary solid modeling CAD package used by the U.S.
government to help model military systems. The package has also been used in a wide range of military, aca-
demic, and industrial applications, including the design and analysis of vehicles, mechanical parts, and archi-
tecture. Other uses have included radiation dose planning, medical visualization, terrain modeling, construc-
tive solid geometry (CSG), modeling concepts, computer graphics education and system performance
benchmark testing.

BRL-CAD supports a wide variety of geometric representations, including an extensive set of traditional
implicit "primitive shapes" (such as boxes, ellipsoids, cones, and tori) as well as explicit primitives made from
collections of uniform B-spline surfaces, non-uniform rational B-spline (NURBS) surfaces, h-manifold geome-
try (NMG), and purely faceted polygonal mesh geometry. All geometric objects may be combined using bool-
ean set-theoretic CSG operations such as union, intersection and difference.

Overall, BRL-CAD contains more than 400 tools, utilities, and applications and has been designed to operate
on many common operating system environments, including BSD, Linux, Solaris, Mac OS X, and Windows.
The package is distributed in binary and source code form as Free Open Source Software (FOSS), provided
under Open Source Initiative (OSI) approved license terms.

History and Vision

BRL-CAD was originally conceived and written by the late Michael Muuss, the inventor of the popular PING
network program. In 1979, the U.S. Army Ballistic Research Laboratory (BRL) (the agency responsible for
creating ENIAC, the world's first general-purpose electronic computer in the 1940s) identified a need for
tools that could assist with the computer simulations and analysis of combat vehicle systems and environ-
ments. When no existing CAD package was found to be adequate for this specialized purpose, Mike and
fellow software developers began developing and assembling a unique suite of utilities capable of interac-
tively displaying, editing, and interrogating geometric models. Those early efforts subsequently became the
foundation on which BRL-CAD was built.

Development of BRL-CAD as a unified software package began in 1983, and its first public release came in
1984. Then, in 2004, BRL-CAD was converted from a limited-distribution U.S. government-controlled code to
an open source project, with portions licensed under the LGPL and BSD licenses.

The ongoing vision for BRL-CAD development is to provide a robust, powerful, flexible, and comprehensive
solid modeling system that includes:

1. Faithful high-performance geometric representation.

2. Efficient and intuitive geometry editing.

3. Comprehensive conversion support for all solid geometry formats.
4. Effective geometric analysis tools for 3D CAD.

Key Strengths

All CAD packages are not alike. Among the many strengths of the BRL-CAD package are the following:

1. BRL-CAD is open source! Don't like something? You can make it better.

2. You can leverage decades of invested development. BRL-CAD is the most feature-filled open
source CAD system available, with hundreds of years time invested.

3. Your work will get used. BRL-CAD is in production use and downloaded thousands of times
every month by people all around the world.

4. You have the ability to create extensively detailed realistic models.

5. You can model objects on scales ranging from (potentially) the subatomic through the galactic, while
essentially providing all the details, all the time.

6. You can leverage one of the fastest raytracers in existence (for many types of geometry).
7. You can convert to and from a wide range of geometry file formats.

8. BRL-CAD has a powerful, customizable scripting interface with many advanced editing and
processing capabilities.

Creating Primitive Shapes

Launching the MGED Program

To launch the MGED program, type mged at the Terminal (ity) prompt and then press the ENTER key.
This brings up two main windows: the MGED Command Window and the MGED Graphics Window (some-
times called the Geometry Window). Both windows will initially be blank, awaiting input from you. To
leave the program at any time, at the Command Line type either the letter q or the word quit and then
press the ENTER key.

Entering Commands in the Command Window

You can type in commands at the mged> prompt. Many experienced UNIX users prefer this method
because it allows them to quickly create a model (which we sometimes refer to as a “design”) without
having to point and click on a lot of options.

Using the GUI

Users who are more familiar with Microsoft Windows may prefer to use the GUI pull- down menus at the
top of the Command or Graphics Window (they are the same in either window). The menus are divided
into logical groupings to help you navigate through the MGED program.

Before you can create a model, you need to open a new database either through the Terminal Window
when starting MGED or through the GUI after starting MGED.

Opening or Creating a New Database when Launching MGED

When launching MGED, you can open or create a database at the same time. At the shell prompt (usually
a $ or %), in the Terminal Window, type mged followed by a new or existing database name with a .g
extension.

For example:

mged sphere.g<ENTER>

| - m(x

File Edit Seftings Help

% mged sphere ﬂ

o I

Using the GUI to Open or Create a Database

Alternatively, once you have launched MGED, you can open an existing database or create a new database
using the GUI menus (at the top of the Command or Graphics Window) by clicking on File and then either
Open or New. Both options bring up a small dialog box. The Open dialog box will ask you to type in the

name of an existing database. The New dialog box will ask you to type in the name of a new database.
Click on OK to accept the database.

For this lesson, create a new database called sphere.g. To do this, type sphere.g at the end of the path
name, as shown in the following illustration. Click on OK to accept the database name.

ommand Window (id Q) Lipper Right

File Edit Create View ViewRing 3Settings Modes Misc JTools Help

B New MGED Database |- B X

Enlar new dalabasa filen .

Infcadividiericisphere.g

OK CANCEL

One advantage to using the GUI, if you aren’t familiar with UNIX file management, is that this will show you
your current path name, so you will know exactly where your database is going to be located. This can be
especially helpful if you have a lot of directories or files to manage.

Assigning a Title to Your Database

You can title your new database to provide an audit trail for you or others who might use your database.
After the prompt, in the Command Window, type title followed by a space and a name that reflects the data-
base you are going to make. When you are done, press the ENTER key. For example:
mged> title MySphere<ENTER>

Note that in BRL-CAD versions prior to release 6.0, the title is limited to 72 characters.
Selecting a Unit of Length

MGED uses millimeters for all internal mathematical processes; however, you can create your design using
some other unit, such as feet. For this lesson, inches is used. To select inches, move your mouse pointer
to the File menu at the top of the Command Window. Click on File and then Preferences. A new menu
will appear. Select Units and then Inches. If you are not a “point-and-click” type of person and prefer a
Command Line,then just type units in after the MGED prompt in the Command Window, followed by the
ENTER key. The Command Line looks like:

mged> units in<KENTER>
Selecting a Primitive Shape

MGED provides a variety of primitive shapes (sometimes referred to as simply shapes or primitives) that you
can use to build models. Each type of shape has parameters that define its position, orientation, and size.

Creating a Sphere from the Command Line

For this lesson, you are going to create a single sphere. There are two ways you can create a primitive
shape. You can create all shapes through the Command Window and most shapes through the GUI.

You can easily create a sphere from the prompt in the Command Window by typing just a few commands. At
the MGED prompt, type:

make sph1.s sph<ENTER>

A default sphere will be created, and a wireframe representation of the primitive shape will appear in the
Graphics Window. In Lesson 4, you will give your sphere a solid, three-dimensional look.

This command will draw the primitive shape in the Graphics Window.

Clearing the Graphics Window

To build another object or work on another primitive shape, you can easily clear the Graphics Window
through the Command Window. At the Command Line prompt, type an uppercase Z (for zap) followed by
ENTER.

Erasing an Item from the Graphics Window
You may occasionally want to erase a particular item from the display in the Graphics Window. You can use
the erase command to remove the item without any file operation being performed; the item remains in the

database. To delete the sph1.s object from the display, at the Command Window prompt, type:

erase sph1.s<ENTER>

Working with Our Code

BRL-CAD consists of more than 1 million lines of source code spanning more than 20 foundation libraries
and 400 application modules.

The majority of BRL-CAD is written in highly portable C and C++, with some GUI and scripting components
written in Tcl/Tk. There is also some support for, and bindings to, other languages available. POSIX shell
scripts are used for deployment integration testing. BRL-CAD uses the CMake build system for compilation
and unit testing.

The Big Picture

The source code and most project data are stored in a Subversion version control system for change track-
ing and collaborative development. Trunk development is generally stable, but cross-platform compilation
is not guaranteed. A separate branch (named STABLE) provides a higher level of quality assurance. Every
released version of BRL-CAD is tested and tagged.

The project aims for an It Just Works approach to compilation whereby a functional build of BRL-CAD is
possible without needing to install more than a compiler, CMake, and a build environment--for example,
GNU Make or Microsoft Visual Studio. BRL-CAD provides all of the necessary third-party dependencies for
download and compilation convenience within source distributions but by default will build using system ver-
sions of those dependencies if available.

As with any large system that has been under development for a number of years, there are vast sections
of code that may be unfamiliar, uninteresting, or even daunting. Don't panic. BRL-CAD has been intentional-
ly designed with layering and modularity in mind.

You can generally focus in on the enhancement or change that interests you without being too concerned
with other portions of the code. You should, however, do some basic research to make sure what you plan
to contribute isn't already in the BRL-CAD code base.

History of the Code

As mentioned previously, the initial architecture and design of BRL-CAD began in 1979. Development as a
unified package began in 1983. The first public release was in 1984. And on December 21, 2004, BRL-CAD
became an open source project.

BRL-CAD is a mature code base that has remained active over decades due to continual attention on design
and maintainability. Since the project's inception, more than 200 people have directly contributed to
BRL-CAD. The project has historically received support from numerous organizations within academia,
commercial industry, various government agencies, and from various independent contributors. We credit
all contributors in BRL-CAD's authorship documentation.

The following diagram illustrates how the number of lines of code in BRL-CAD has changed over time:
System Architecture

BRL-CAD is designed based on a UNIX methodology of the command-line services, providing many tools
that work in harmony to complete a specific task. These tools include geometry and image converters,
signal and image processing tools, various raytrace applications, geometry manipulators, and much more.

To support what has grown into a relatively large software system, BRL-CAD takes advantage of a variety
of support libraries that encapsulate and simplify application development. At the heart of BRL-CAD is a
multi-representation ray tracing library named LIBRT. BRL-CAD specifies its own file format (files with the
extension .g or .asc) for storing information on disk. The ray tracing library uses a suite of other libraries for
other basic application functionality.

Tenets of Good Software

BRL-CAD's architecture is designed to be as cross-platform and portable as is realistically and reasonably
possible. As such, BREL-CAD maintains support for many legacy systems and devices provided that main-
taining such support is not a significant burden on new development.

The code adheres to a published change deprecation and obsolescence policy wherehy features that have
bheen made publicly available are not removed without appropriate notification. Generally there should be a
compelling motivation to remove any existing functionality, but improvements are encouraged.

BRL-CAD has a longstanding heritage of maintaining verifiable, validated, and repeatable results in critical
portions of the package, particularly in the ray tracing library. BRL-CAD includes regression tests that will
compare runtime behavior against known results and report any deviations from previous results as failures.
Considerable attention is put into verification and validation throughout BEL-CAD. Incorrect behavior does
not need to be preserved simply to maintain consistency, but it is rare to find genuine errors in the baseline
testing results. So, anyone proposing such a behavior change will have to conclusively demonstrate that the
previous result is incorrect.

Working with Our Documentation

BRL-CAD provides documentation in the following formats:

1. UNIX man pages.
2. HyperText Markup Language (HTML) for the web.
3. PDF for documents needing a well-defined, consistent appearance.

Our challenge i1s to maintain BRL-CAD's documentation in multiple formats. It is difficult enough to keep
software documentation up to date without needing to update multiple documents using different formats
that contain the same information. As well, it is not possible to supply documentation in a single format that
works optimally on all platforms. For example, while UNIX man pages are standard across all UNIX and
UMIX-like systems, most Windows systems will not understand that format and will require HTML versions
of those documents.

Instead of using a mix of formats and tools, BEL-CAD uses the DocBook documentation format and tool-
chain to produce documentation in the range of required formats.

What is DocBook?

DocBook is @ schema (a structured approach to organization of information) that uses the eXiensible
Markup Language standard (XML) as its fundamental framework and builds atop that framework a vocabu-
lary for describing the content and structure of technical documentation. BRL-CAD uses the DocBook 5.0
documentation format to describe its documentation. For detailed documentation for DocBook 5.0, see
hitp:/f'www dochook.org/tdgS/en/html/docbook.html.

Tools for Working with DocBook

While you can write documentation in DocBook using WY SIWY G (What You See |s What You Get) editors,
we require that a document saved to DocBook from an editing tool should be inspected for human readahili-
ty and, if necessary, reformatted for simplicity.

If you are comfortable with working with DocBook XML directly, we recommend that you use the Emacs
editor and its nXML module. nXML can automatically recognize and highlight mistakes in the structure of a
document while you are editing. The following image illustrates nXML identifying an incorrect closing tag for
an informal figure object:

Fle D Opuen BuSen el oA Help

POE=2xO0 ~ ¥ 08 a6 4@

sl wineslirstion, o the ssdeler mesdn fo Bear Thdn cast in mird

afparar

Free ey
Thie Dide gendrated b8 sledys denterid on the glebal @ igis
A Ak

ree L

apps Eignedindoesfitioeipecifying & Tire wifh Stenderd Fesmiicssl Comventissadltitleesiinler

o T
The defsuli havior Tor the tirs procedors Fith no srguesnte given i i producs 3
fire of diserpions JIS/R0ELY withoay fresd in & Tile nessed Tire.g

aEnlarasl T igures
il Gl L
5 e ey L e
o g el s s {eilar™ filerefa” g 1L 1 i s Pl EREfes SLEFE_FLEST g™ o
srumapeabyed e

SEaphloar

T
DeTaulf Eire ssdel cresied by iiommssdefirediiommands fa2l.
= igaras
sicapt lans
= fmedianh et
« i ormat | gur e
Siss this defsuly is enlikely 16 Seer vhe feeds of sadan speriPic swleling vesks,
sy @l uids of SomRmafley pFEdAOiEaendr will redd thE Cod™ Blag v
tuileaiie 1he dissni]ss
v a)l ataral Layaw] i tpsted"rEire ~d IVSFERNIE Y | L Reral]l apiill
FTELL P I T] R OLES TSI TS (e Bl e ce e e iaiciaccaccccicaccsasacsasacaaaead

WHiveabched wmd-Exg

Aside from error checking tools like nXML, the ability to pinpoint errors in a document’s formatting is built
into the BEL-CAD compilation process. That process uses a tool called xmllint to report incorrect format-
ting. When, for example, the error illustrated in the image above is encountered during BRL-CADs build,
zmllint produces the following error:

[40%] Validating DocBook source with xmilint:

/homelfuser/bricad/doc/dochook/articlesfen/tire. xml:65; parser error . Opening and ending tag mismatch:
informalfigure line 54 and informafigure

=/informafigure=

CMake Error at tire_validate cmake:39 (message):
xmilint failure: 1

In this case, the error is reasonably informative. However, xmllint is not the only tool available for this sort
of error checking. You can specify the following validation tools when you configure your environment:

1. Oracle Multi-Schema XML Validator (https:/imsv_java.net) - specified as msv on the command line.
2. oNVDL (http://sourceforge net/projects/onvdl) - specified as nvld on the command line.
3. Relax NG Validator (rnv) (http://sourceforge.net/projects/rnv) - specified as rsv on the command line.

Adding a New Document to BRL-CAD

Because creating and editing DocBook documentation is greatly simplified by BEL-CAD's management of
the conversion process, it is usually a good idea to add a new document to the build system at the begin-
ning of the document creation and editing process. To do this, copy a template file from the source directo-
ries to the file name to be used for the new document.

For example, if you are writing a new DocBook article in English about the ellipsoid, use the following com-
mand to copy the article template to the filename ellipsoid.xml in the English articles directory:

~fbricad § cp doc/dochook/articles/en/TEMPLATE.xml doc/docbook/articles/en/ellipsoid.xmil

Next, open the file doc/dochook/articles/en/CMakeLists txt in a text editor. Then, add the name of the new
document to the file to alert the build system of its existence:

emacsEthink inue - ThinkPad-TEo
e Ede Optesns Buffers Teols Hep

POE=*xGD ~ YO BaaE @B

st dochook_articleis_EH
TEMPLATE . mm]
about . xal
build_pattern. sl
billd_ragion. &l
eba_primitive,wsl
#llipsaid,xal]]
mgedrc . onl
niry, xal
oed . oml
pipai, xal
projection_shader.wsl
tife, xal

H

st docbook_articles_EH_TMAGES
imageisbuild_pattern_Tigol,pag
imagesSbulld_pattern_figlZ.png
imageisbuild_pattern_figod,png
imagessbuild_pattern_figo4.png
imagessbuild_pattern_figl%.png
imagessbuild_pattern_Tighs. png
- imagessbuild_pattern_figl?.png
=-:%%- (hakelizts.tet Tep LT SWN-SASS1 (KMARE)--------------

BRL-CAD now knows about the new file and can generate output for it.

You will generally only want to rebuild a specific output (say, HTML) to confirm that output renders properly.
To set up the specific targets for the new file, run the command below to refresh the build targets (in this
example, the build output directory is called build):

~fbricad/build $ cmake ..

This creates a new build target, ellipsoid_article_html, which will build only the HTML output of the docu-
ment and its dependencies:

~bricad/build % make ellipsoid_article_html

[0%] Built target printtimestamp
[0%)] Built target buildtimestart

Build Time: Tue Oct 15 19:14:42 2013

[0%] Built target timestamp

[0%)] Built target zlib

[100%] Built target xml

[100%] Built target xslt

[100%] Built target exsit

[100%] Built target xmllint

[100%)] Built target xsltproc

[100%] Built target schema-expand

[100%] Built target fonts-dejavu-expand

[100%] Built target fonts-stix-expand

[100%] Built target offo-2-expand

[100%] Built target svg-ditd-expand

[100%] Built target xsl-expand

[100%] Built target docbook_articles_EN_IMAGES _cp

scanning dependencies of target ellipsoid_arficle_html

[100%] Validating DocBook source with xmllint:
/homel/cyapp/bricad/doc/dochook/articles/en/ellipsoid.xml validates
[100%] Generating _./../..[. [share/doc/html/articles/en/ellipsoid.himl
[100%] Built target ellipsoid_article_html

~fbricad/build %

