Data Structures | |
struct | bn_tol |
Support for uniform tolerances. More... | |
Defines | |
#define | BN_CK_TOL(_p) BU_CKMAG(_p, BN_TOL_MAGIC, "bn_tol") |
#define | BN_TOL_INIT(_p) |
#define | BN_TOL_INIT_ZERO { BN_TOL_MAGIC, 0.0, 0.0, 0.0, 1.0 } |
#define | BN_TOL_IS_INITIALIZED(_p) (((struct bn_tol *)(_p) != (struct bn_tol *)0) && LIKELY((_p)->magic == BN_TOL_MAGIC)) |
#define | BN_VECT_ARE_PARALLEL(_dot, _tol) (((_dot) <= -SMALL_FASTF) ? (NEAR_EQUAL((_dot), -1.0, (_tol)->perp)) : (NEAR_EQUAL((_dot), 1.0, (_tol)->perp))) |
#define | BN_VECT_ARE_PERP(_dot, _tol) (((_dot) < 0) ? ((-(_dot))<=(_tol)->perp) : ((_dot) <= (_tol)->perp)) |
#define BN_CK_TOL | ( | _p | ) | BU_CKMAG(_p, BN_TOL_MAGIC, "bn_tol") |
asserts the validity of a bn_tol struct.
Definition at line 115 of file bn.h.
Referenced by bn_2line3_colinear(), bn_3pts_distinct(), bn_between(), bn_coplanar(), bn_dist_line3_line3(), bn_dist_line3_lseg3(), bn_dist_pt2_lseg2(), bn_dist_pt3_line3(), bn_dist_pt3_lseg3(), bn_isect_line2_line2(), bn_isect_line2_lseg2(), bn_isect_line3_plane(), bn_isect_line_lseg(), bn_isect_lseg2_lseg2(), bn_isect_lseg3_lseg3(), bn_isect_pt2_lseg2(), bn_isect_pt_lseg(), bn_mat_is_equal(), bn_mk_plane_3pts(), bn_npts_distinct(), and bn_pt2_pt2_equal().
#define BN_TOL_INIT | ( | _p | ) |
#define BN_TOL_INIT_ZERO { BN_TOL_MAGIC, 0.0, 0.0, 0.0, 1.0 } |
#define BN_VECT_ARE_PARALLEL | ( | _dot, | |||
_tol | ) | (((_dot) <= -SMALL_FASTF) ? (NEAR_EQUAL((_dot), -1.0, (_tol)->perp)) : (NEAR_EQUAL((_dot), 1.0, (_tol)->perp))) |
returns truthfully whether a given dot-product of two unspecified vectors are within a specified parallel tolerance.
Definition at line 143 of file bn.h.
Referenced by bn_dist_line3_line3().