Collaboration diagram for Complex Numbers:


This browser is not able to show SVG: try Firefox, Chrome, Safari, or Opera instead.

## Data Structures

struct  bn_complex
Complex numbers. More...

## Macros

#define bn_cx_copy(ap, bp)   {*(ap) = *(bp);}

#define bn_cx_neg(cp)   { (cp)->re = -((cp)->re);(cp)->im = -((cp)->im);}

#define bn_cx_real(cp)   (cp)->re

#define bn_cx_imag(cp)   (cp)->im

#define bn_cx_add(ap, bp)   { (ap)->re += (bp)->re; (ap)->im += (bp)->im;}

#define bn_cx_ampl(cp)   hypot((cp)->re, (cp)->im)

#define bn_cx_amplsq(cp)   ((cp)->re * (cp)->re + (cp)->im * (cp)->im)

#define bn_cx_conj(cp)   { (cp)->im = -(cp)->im; }

#define bn_cx_cons(cp, r, i)   { (cp)->re = r; (cp)->im = i; }

#define bn_cx_phas(cp)   atan2((cp)->im, (cp)->re)

#define bn_cx_scal(cp, s)   { (cp)->re *= (s); (cp)->im *= (s); }

#define bn_cx_sub(ap, bp)   { (ap)->re -= (bp)->re; (ap)->im -= (bp)->im;}

#define bn_cx_mul(ap, bp)

#define bn_cx_mul2(ap, bp, cp)

## Typedefs

typedef struct bn_complex bn_complex_t
Complex numbers. More...

## Functions

void bn_cx_div (bn_complex_t *ap, const bn_complex_t *bp)
Divide one complex by another. More...

void bn_cx_sqrt (bn_complex_t *op, const bn_complex_t *ip)
Compute square root of complex number. More...

## Macro Definition Documentation

 #define bn_cx_copy ( ap, bp ) {*(ap) = *(bp);}

Definition at line 46 of file complex.h.

 #define bn_cx_neg ( cp ) { (cp)->re = -((cp)->re);(cp)->im = -((cp)->im);}

Definition at line 47 of file complex.h.

 #define bn_cx_real ( cp ) (cp)->re

Definition at line 48 of file complex.h.

Referenced by rt_poly_checkroots().

 #define bn_cx_imag ( cp ) (cp)->im

Definition at line 49 of file complex.h.

Referenced by rt_poly_checkroots().

 #define bn_cx_add ( ap, bp ) { (ap)->re += (bp)->re; (ap)->im += (bp)->im;}

Definition at line 51 of file complex.h.

Referenced by rt_poly_eval_w_2derivatives(), and rt_poly_findroot().

 #define bn_cx_ampl ( cp ) hypot((cp)->re, (cp)->im)

Definition at line 52 of file complex.h.

Referenced by bn_cx_sqrt().

 #define bn_cx_amplsq ( cp ) ((cp)->re * (cp)->re + (cp)->im * (cp)->im)

Definition at line 53 of file complex.h.

Referenced by rt_poly_deflate(), and rt_poly_findroot().

 #define bn_cx_conj ( cp ) { (cp)->im = -(cp)->im; }

Definition at line 54 of file complex.h.

Referenced by rt_poly_roots().

 #define bn_cx_cons ( cp, r, i ) { (cp)->re = r; (cp)->im = i; }

Definition at line 55 of file complex.h.

Referenced by rt_poly_eval_w_2derivatives(), and rt_poly_roots().

 #define bn_cx_phas ( cp ) atan2((cp)->im, (cp)->re)

Definition at line 56 of file complex.h.

 #define bn_cx_scal ( cp, s ) { (cp)->re *= (s); (cp)->im *= (s); }

Definition at line 57 of file complex.h.

Referenced by rt_poly_findroot().

 #define bn_cx_sub ( ap, bp ) { (ap)->re -= (bp)->re; (ap)->im -= (bp)->im;}

Definition at line 58 of file complex.h.

Referenced by rt_poly_findroot().

 #define bn_cx_mul ( ap, bp )
Value:
{ register fastf_t a__re, b__re; \
(ap)->re = ((a__re=(ap)->re)*(b__re=(bp)->re)) - (ap)->im*(bp)->im; \
(ap)->im = a__re*(bp)->im + (ap)->im*b__re; }
unsigned char * bp
Definition: rot.c:56
double fastf_t
Definition: defines.h:300

Definition at line 60 of file complex.h.

Referenced by rt_poly_eval_w_2derivatives().

 #define bn_cx_mul2 ( ap, bp, cp )
Value:
{ \
(ap)->re = (cp)->re * (bp)->re - (cp)->im * (bp)->im; \
(ap)->im = (cp)->re * (bp)->im + (cp)->im * (bp)->re; }
unsigned char * bp
Definition: rot.c:56

Definition at line 66 of file complex.h.

Referenced by rt_poly_findroot().

## Typedef Documentation

 typedef struct bn_complex bn_complex_t

Complex numbers.

## Function Documentation

 void bn_cx_div ( bn_complex_t * ap, const bn_complex_t * bp )

Divide one complex by another.

bn_cx_div(&a, &b). divides a by b. Zero divisor fails. a and b may coincide. Result stored in a.

Referenced by rt_poly_findroot().

 void bn_cx_sqrt ( bn_complex_t * op, const bn_complex_t * ip )

Compute square root of complex number.

bn_cx_sqrt(&out, &c) replaces out by sqrt(c)

Note: This is a double-valued function; the result of bn_cx_sqrt() always has nonnegative imaginary part.

Definition at line 66 of file complex.c.

References bn_cx_ampl, bn_complex::im, bn_complex::re, and ZERO.

Referenced by rt_poly_findroot().