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A. STATEMENT OF THE PROBLEMS STUDIED We started out with the
goal of studying the use of (smooth) piecewise polynomial spaces for the approximation
of functions in one and, preferably, in several variables. We were looking for a better
understanding of how well one can approximate from specific spaces, for specific schemes
for approximation, including good bases for such spaces, and hoped to make inroads on the
problem of extending techniques for curve fitting by smoothly patched curves to surface
interpolation.

While we made progress on these questions, we also pursued two related but unantici-
pated projects: (i) a monograph on box splines (to make available in easily accessible form
the many results on box splines obtained by us and others since their introduction by us ten
years ago); and (ii) what now looks like the ‘right’ approach to polynomial interpolation
in several variables.

B.SUMMARY OF THE MOST IMPORTANT RESULTS This brief outline
relies on the fact that more details can be found in the semi-annual reports submitted
during the grant period, and, if need be, in the manuscripts filed with ARO as required.
All boldfaced numbers refer to items in the list of publications given in C.

Major results include the following:

(a) The surprising fact that smoothness requirements restrict the approximation power
of bivariate piecewise polynomials much less than was assumed in the finite element
literature (see 5, 12).

(b) A thorough understanding of the mechanism of quasi-interpolation for the construc-
tion of optimal approximation schemes (see 11, 17, 18).

(c) A surprisingly simple and effective algorithm for rational spline curves (see 2).

(d) The use of ideal theory and harmonic analysis for the understanding of the polynomials
contained in a box spline space (see 9, 11, 13, 14), an investigation which ultimately
led to the most important result of this grant, the new approach to multivariable
polynomial interpolation (see below).

(e) Algorithms and programs for the construction of C! surfaces consisting of polynomial
patches and fitting to a given arbitrary triangular mesh of data or curves.

(f) Some of the research findings (e.g., 1, 3, 15) were the result of questions which arose
during our work on a book on box splines. This monograph, jointly authored by C. de
Boor, K. Héllig and S. Riemenschneider (and admittedly much longer in the making than
we anticipated when we started three years ago), is now close to completion, missing only
some final work on the last three chapters and notes on the relationship of the material
presented to the existing literature. The chapter headings (1. Box splines defined; 2.
The linear algebra of box spline spaces; 3. Quasiinterpolants and approximation order; 4.
Cardinal interpolation and difference equations; 5. Cardinal splines and cardinal series; G.
Discrete box splines and linear diophantine equations; 7. Subdivision algorithms) provide
a feeling for the material covered, but do not hint at the many illustrations provided nor
at the great effort made in other ways to present the basic box spline theory in as simple
and as illuminating a way as possible (but see Figures 1 and 2 below, as well as 16, where
the material of chapter 7, restricted to the practically important two-dimensional case, is
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quoted). This book has occupied much of de Boor’s research time (and of Héllig’s while he
was still supported by this grant). Part of the difficulty in writing this book was due to the
fact that, in the exuberance of initial discovery, many of the authors of the basic papers in
this theory were not all that careful in their presentation. Also, with the hindsight afforded
by such a systematic study of the literature, we found ourselves confronted with various
questions left open, yet needing to be answered in a comprehensive discussion. The book
is to be published by Springer-Verlag. We hope that its publication will further the use of
box splines in CAGD and in the developing multivariable wavelet theory.

(1)Figure. The hat function and the Zwart element

(g) The most important research finding obtained by work supported by this grant is the
realization that there is a very simple way of assigning, to each finite pointset © in IR”,
a polynomial space Ilg suitable for interpolation to arbitrary data on that pointset. The
initial discovery is reported in 8, numerics of the scheme are addressed in 19, 20, and a
far-reaching generalization to interpolation, not just to point values but to arbitrary linear
information, is detailed in 21.

Polynomial interpolation is at the basis of most of the local approxim: .ion that goes
into the construction of quadrature and differentiation rules, and, on a m.re sophisticated
level, into numerical schemes for the solution of functional equations, be they integral or
differential equations. But, while this basic construct is fully understood in the univariate
casc (and has been for centuries, as is attested by the fact that such names as Newton,
Cauchy, Lagrange, and Hermite arc associated with it), the multivariate story is completely
different. The basic difficulty has been to decide just what polynomial space to use to
interpolate from when given data at a certain set © of points in IR*. Even if the cardinality
of © happens to coincide with the dimension of the space 1l of all polynomials of degree < k
in s variables, there is no reason to believe that such interpolation is possible. Thus past
efforts have mostly been directed at discovering sp-cific pointsets © at which interpolation
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from Il; is possible. (A first effort to provide reasonable polynomial interpolation at
arbitrary pointsets (Kergin interpolation) provided the clue needed to find the recurrence
relations for simplex splines, thus setling off an investigation into multivariate splines that
continues unabated to this day.) In contrast, we were able to work out a way of associating
with every finite pointset © in IR® a polynomial space IIg from which one can uniquely
interpolate at the points of ©. Now, that by itself is not so impressive. What is remarkable
are the various attributes our choice IIg has:

(i) The choice is monotone, i.e., © C ©' implies that IIg C Ilg:. This makes it possible
to construct a Newton form for the interpolant, i.e., the introduction of an additional data
point only requires a modification of the interpolant already constructed.

(ii) The choice is continuous (to the extent that that is possible), i.e., small changes
in © usually don’t change Ilg much (if at all).

(iii) As points coalesce (in a disciplined way), we obtain Hermite (or osculatory)
interpolation in the limit.

(iv) Each Mg is translation-invariant, hence differentiation-invariant.

(v) Each Ilg is scale-invariant, he -ce spanned by homogeneous polynomials.

(vi) For any invertible matrix A and any point ¢ € IR’, 140+ = Io0AT. This implies
that Ile inherits any symmetries (such as invariance under rotations and/or reflections)
that © might have. In conjunction with (v), it says that Ilg is unchanged if © is shifted
and/or scaled.

(vil) Among all polynomial interpolants to given data on ©, our interpolant has the
smallest possible degree.

(viii) If © is a cartesian product (e.g., a grid of points), then Ilg is a tensor product
of the polynomial spaces assigned to the (lower-dimensional) factor sets.

(ix) A polynomial vanishes at every point of @ if and only if the constant coefficient
homogeneous differential operator associated with its leading term vanishes on IIg. For
example, if all the points of © lie on some circle in the plane, then Il consists of harmonic
polynomials.

While we came upon it in an investigation of spaces which are limits of exponential
spaces (as the frequencies coalesce, see 8), we found subsequently (see 19, 20) that our
particular choice Ilg can also be arrived at more directly by an interesting variation on
Gauss elimination applied to the Vandermonde matrix (%) for the points J € ©. (I hasten
to add that it seems unlikely that this scheme would have been found by experimenting
with that Vande monde matrix without the benefit of knowing what we wanted to find.)
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(2)Figure. The mesh functions a, a'/2, a'/* as well as the corresponding

box spline surface obtained as limit of subdivision.




