

Interactive Raytracing: The nirt Command

by Clifford Yapp

ARL-CR-624 April 2009

prepared by

Quantum Research International, Inc.
2014 Tollgate Rd., Ste. 203

Bel Air, MD 21015

under contract

W911QX-06-F-0057

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-CR-624 April 2009

Interactive Raytracing: The nirt Command

Clifford Yapp

Quantum Research International, Inc.

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June 2008–October 2008
4. TITLE AND SUBTITLE

Interactive Raytracing: The nirt Command
5a. CONTRACT NUMBER

W911QX-06-F-0057
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Clifford Yapp
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Quantum Research International, Inc.
2014 Tollgate Rd., Ste. 203
Bel Air, MD 21015

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-SL-BS
Aberdeen Proving Ground, MD 21005-5068

10. SPONSOR/MONITOR’S ACRONYM(S)

ARL

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

ARL-CR-624
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The nirt command casts individual rays according to user-specified options and reports back a wide variety of information
about the model along the specified ray. It is extremely useful for tasks such as measuring the thickness of objects and
identifying gaps between objects. When used within the multidevice graphics editor environment, NIRT will produce a visible
ray path, coloring the ray according to the geometry encountered along the ray. It is also scriptable, allowing users to develop
their own custom analysis routines.

15. SUBJECT TERMS

BRL-CAD, raytracing, nirt, Natalie’s Interactive Ray-Tracer

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

58

19a. NAME OF RESPONSIBLE PERSON

Michael Gillich
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-7820
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables vi

Acknowledgments vii

1. About NIRT 1

2. NIRT: Basic Syntax and Operations 1

2.1 Command Line Help ...1

2.2 Loading a Model ...2

2.3 Shooting a Ray ..3

2.4 Moving the Origination Point..4

2.5 Backing Out of a Model ..4

2.6 Changing the Direction of the Ray ..5

2.7 Reporting of Overlaps ...6

3. Graphical Visualization: NIRT in MGED 7

3.1 Basic Usage ...8

3.2 Backing Out With NIRT in MGED ..9

3.3 Ray Segment Coloring With NIRT and MGED ...10

3.4 Mouse-Based NIRT Usage ..13

4. Configuring NIRT With the Query Ray Control Panel 15

4.1 Enabling and Disabling Mouse-Based NIRT Ray Casting ...15

4.2 Customizing NIRT Coloring in MGED ..16

4.3 Customizing the Pseudo-Primitive Base Name...17

4.4 Echoing the Internal nirt Command ..19

4.5 Selecting Graphical and Textual Output ...21

5. Reporting Options 21

5.1 How to Change the Reporting Format ..21

iv

5.2 Handling Attribute Reporting ..24

5.3 Changing Units ..25

6. Other Options 26

6.1 Silent and Verbose Modes ...26

6.2 Using Air Regions ...26

6.3 Reading an Orientation Matrix and Commands ..27

7. Scripting NIRT 28

7.1 Command Line Scripts: The e Option ..28

7.2 Script Files: Other Uses of the f Option ...29

7.3 Defining a Custom Reporting Format ...31

7.4 Customizing Report Output in MGED ..32

7.5 Reporting Attributes in MGED: Advanced Formatting and Scripting33

7.6 Available Information for Inclusion in Reports ..34

8. Summary 35

Appendix A. Debugging Options 37

Appendix B. Report Format Variable Listings 41

Distribution List 44

v

List of Figures

Figure 1. Wireframe view of the three arb8 cubes which will be used to build example
models for illustrating NIRT behavior. ..2

Figure 2. View of wireframe immediately after running NIRT within MGED.8

Figure 3. View of wireframe after changing view direction, showing path of NIRT ray.9

Figure 4. View of NIRT ray intersecting left_and_right_cubes.r with ray origin at the global
origin. ...10

Figure 5. View of NIRT ray intersecting left_and_right_cubes.r with ray origin backed out
of the region. ..10

Figure 6. Side view of aligned individual arb8 cubes with a single NIRT ray passing through
all three cubes. ...11

Figure 7. View of wireframe of three arb8 cubes combined into a single region with a NIRT
ray passing through the region on the same path as that used for the individual arb8
cubes. ...12

Figure 8. View of ray cast through only left_cube.r and right_cube.r. ..13

Figure 9. Example of an overlap region in a NIRT ray. ...13

Figure 10. Grid overlay on MGED wireframe. ...14

Figure 11. MGED’s Query Ray Control Panel with the Mouse Active check box circled.15

Figure 12. MGED’s Query Ray Control Panel with the Query Ray Colors circled.16

Figure 13. MGED’s Query Ray Control Panel with an example color list selected.17

Figure 14. MGED’s color tool. ...17

Figure 15. Wireframe view of a NIRT ray using multiple colors. ..18

Figure 16. Wireframe view of the NIRT ray after erasing query_rayff00ff.18

Figure 17. MGED’s Query Ray Control Panel showing a new Base Name.19

Figure 18. MGED’s Query Ray Control Panel with the Echo Cmd check box circled.20

Figure 19. MGED’s Query Ray Control Panel with the Effects drop-down menu shown.21

Figure 20. Shot command output file imported into a spreadsheet. ...23

Figure 21. MGED’s Query Ray Control Panel showing the Use Air check box.27

Figure 22. The f option output file imported into a spreadsheet. ..31

Figure 23. MGED’s Query Ray Advanced Settings dialog box. ..33

Figure 24. Query Ray Advanced Settings dialog box showing changes to values (white
highlight). ...33

Figure 25. Adding commands to the Script line in the advanced settings dialog.34

vi

List of Tables

Table 1. NIRT command line environments. ..1

Table 2. Interactive command s report breakdown. ..3

Table 3. Ray segment coloring conventions. ..11

Table 4. Report event types. ...34

Table B-1. Ray variables. ..42

Table B-2. Partition variables. ..42

Table B-3. Overlap variables. ...43

Table B-4. Gap variables. ...43

vii

Acknowledgments

The author would like to thank Bob Parker, John Anderson, Janine Gettier, and Christopher Sean
Morrison for their time and help with explaining some of the more subtle concepts encountered
by the author during the creation of this report.

viii

INTENTIONALLY LEFT BLANK.

1

1. About NIRT

The NIRT (Natalie’s Interactive Ray-Tracer) command line tool provides a user-level interface
to the low-level routines defining the ray tracing logic, allowing a user to specify and cast an
individual ray and tailor the information reported. It was originally written by Natalie L. Eberius
and Paul J. Tanenbaum in the early 1990s, with additional updates by others over the years.
Significant work was done by Bob Parker in the late 1990s to integrate NIRT with a multidevice
graphics editor (MGED), resulting in wireframe visualization of ray paths and the Query Ray
Control Panel.

2. NIRT: Basic Syntax and Operations

There are two environments within which NIRT can be used—inside the MGED interactive
geometry editor and within its own command line interactive environment. Consequently, there
are three command line environments where behavior needs to be described in this document:
operating system command prompt, NIRT command prompt, and MGED command prompt
(table 1).

Table 1. NIRT command line environments.

Command Line Environment Command Type
Operating system command line prompt Command

NIRT command prompt Interactive command
MGED command prompt MGED command

2.1 Command Line Help

NIRT provides an h option which prints out a list of available options and command syntax:

user@machine ~ $ nirt --h
Usage: ‘nirt [options] model.g objects...’
Options:
 -b back out of geometry before first shot
 -B n set rt_bot_minpieces=n
 -e script run script before interacting
 -f sfile run script sfile before interacting
 -L list output formatting options
 -M read matrix, cmds on stdin
 -O action handle overlap claims via action
 -s run in silent (non-verbose) mode
 -u n set use_air=n (default 0)
 -v run in verbose mode
 -x v set librt(3) diagnostic flag=v
 -X v set nirt diagnostic flag=v

2

2.2 Loading a Model

There will be a number of models used to illustrate various NIRT behaviors, all of which will be
centered around regions created with various combinations of 2-mm arb8 cubes (figure 1). The
left cube is centered at (-2, 0, 0), the center cube at (0, 0, 0), and the right cube at (2, 0, 0). One
additional arb8 will be defined to overlap the center cube with side lengths in the z direction of
4 mm. The various models based off of these primitives will be read from a database called
nirt_example.g.

Figure 1. Wireframe view of the three arb8
cubes which will be used to build
example models for illustrating
NIRT behavior.

Although there are many nirt options available, only the database name and objects are essential
to get started:

nirt { model.g} { objects}

where objects is a list of objects in the database separated by spaces. To begin, select the object
center_cube.r object with interactive command line NIRT. The form of the command is:

nirt nirt_example.g center_cube.r

This starts up the NIRT command line interactive environment:

BRL-CAD Release 7.13.0 Natalie’s Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: ‘nirt_example.g’
Building the directory...
Get trees...

To quickly find out what objects are in a database, use the commands mged -c nirt_example.g tops to see all top-level

objects and mged -c nirt_example.g ls to see all objects in the model.

3

Prepping the geometry...
Object ‘center_cube.r’ processed
Database title: ‘Example BRL-CAD Database’
Database units: ‘mm’
model_min = (-1, -1, -1) model_max = (1, 1, 1)
nirt>

The first three lines identify the release number, tool being used, date of compilation or date
release was made, and user. The fourth line identifies the database file. The next three lines are
informational messages relating to model setup. The database title and units are then printed.
The last pieces of information, model_min and model_max, are the outer bounds of the objects
specified.

2.3 Shooting a Ray

With the example loaded into NIRT, the s interactive command is used to shoot a ray:

nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000

What happened and what do these results mean? Table 2 breaks down the structure of the report.
Because the ray only hit center_cube.r, only center_cube.r appears in the report. (Remember,
NIRT was only supplied with center_cube.r for a target object to begin with.) Many examples of
real-world NIRT usage will have much more complex geometries and hence longer reports.

Table 2. Interactive command s report breakdown.

Report Element Meaning

Origin Origination point of the ray (NOT the model origin)

x y z Coordinates in the reference frame of the model

h v d Coordinates in the reference frame of the view

Direction Direction in which the ray is traced; reported as a unit vector in model
coordinates and as an azimuth/elevation angle pair

Region name Name of region as recorded in database file

Entry (x y z) Point at which ray first enters the region

LOS Line-of-sight thickness. In this basic instance, it is equivalent to the
thickness of the object along the ray vector.

Obliq_in Obliquity of the ray at the point of entry into the region (0 in this case
because the ray happened to be perpendicular to the surface in question)

Attrib Additional attributes the region in question has assigned and the user
requested (in this case, none were requested)

4

2.4 Moving the Origination Point

If we move the origin to some point other than the sphere center, a different ray is cast and the
reported intersections change. The xyz interactive command will print the current origin if given
no arguments and accept a list of points to change the origin:

nirt> xyz
(x, y, z) = (0.00, 0.00, 0.00)
nirt> xyz 0 0 .5
nirt> xyz
(x, y, z) = (0.00, 0.00, 0.50)
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.50000000) (h v d) = (0.0000 0.5000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.5000) 2.0000 0.0000

2.5 Backing Out of a Model

Although in both previous cases, the ray’s origin was inside the cube, NIRT backed up to the
point of first intersection along the indicated vector to report both LOS thickness and entry. This
behavior is specific to the case of an origination point inside a region. In the case where the
origination point of the ray is between two objects belonging to the same region, NIRT will
report only those portions of the region along its path forward. To ensure that a ray always starts
outside the entire geometry, the backout interactive command is used. The backout command
moves the starting point outside the bounding box of the model. This ensures that all segments
along a given ray path will be reported. As an illustration, reload nirt_example.g and this
time specify left_and_right_cubes.r (defined as the combination of left_cube.s and right_cube.s).
Cast rays before and after backout:

nirt> q
Quitting...

user@machine ~ $ nirt nirt_example.g left_and_right_cubes.r
BRL-CAD Release 7.13.0 Natalie’s Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: ‘nirt_example.g’
Building the directory...
Get trees...
Prepping the geometry...
Object ‘left_and_right_cubes.r’ processed
Database title: ‘Example BRL-CAD Database’
Database units: ‘mm’
model_min = (-3, -1, -1) model_max = (3, 1, 1)
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000
nirt> backout 1
nirt> s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)

To perform this operation automatically when the model is loaded, supply the b flag to nirt at startup: nirt -b.

5

 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

In the first raytrace, left_and_right_cubes.r did not backtrack to generate its LOS thickness
value, and when the backout option was applied, left_and_right_cubes.r gained an extra entry.
The double report for left_and_right_cubes.r is not a mistake; the ray did indeed enter and exit
the region twice once the backout interactive command changed the origination point.

It is important to understand that the backout interactive command does not permanently change
the origination point of the ray; it requests an automatic adjustment of the origination point based
on the model for the casting of the ray and then restores the original specified origination point.
If the user no longer wishes to have NIRT back the origination point out of the model,
deactivating the backout flag (supplying 0 to the backout interactive command) will restore the
nonbackout point. If the xyz interactive command is used to change the origination point while
backout is activated, the backout routine will back out from the new point. For example:

nirt> backout 0
nirt> xyz
(x, y, z) = (0.00, 0.00, 0.00)
nirt> xyz 0 0.5
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.50000000) (h v d) = (0.0000 0.5000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 0.0000 0.5000) 2.0000 0.0000
nirt> backout 1
nirt> xyz
(x, y, z) = (0.00, 0.00, 0.50)
nirt> backout 0
nirt> xyz
(x, y, z) = (0.00, 0.00, 0.50)
nirt> backout 1
nirt> xyz 0 0.8
nirt> s
Origin (x y z) = (6.63324958 0.00000000 0.80000000) (h v d) = (0.0000 0.8000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.8000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.8000) 2.0000 0.0000
nirt> backout 0
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.80000000) (h v d) = (0.0000 0.8000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 0.0000 0.8000) 2.0000 0.0000
nirt>

2.6 Changing the Direction of the Ray

The other fundamental operation needed to make NIRT usable is changing the direction of the
ray. This is achieved with the dir interactive command, which either prints out the current
direction unit vector (if no arguments are supplied) or takes x, y, and z components of a vector

6

separated by spaces and changes the direction. To make interpreting the results easier for this
example, the origination point of the ray is first returned to the origin:

nirt> xyz 0 0 0
nirt> dir
(x, y, z) = (-1.00, 0.00, 0.00)
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (-0.00000000 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000
nirt> dir -1 -.5 0
nirt> dir
(x, y, z) = (-0.89, -0.45, 0.00)
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-0.89442719 -0.44721360 0.00000000) (az el) = (26.56505118 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-1.0000 -0.5000 0.0000) 1.1180 26.5651
nirt> dir 0 0 1
nirt> s
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (0.00000000 0.00000000 1.00000000) (az el) = (0.00000000 -90.00000000)
You missed the target
nirt>

The first shot in the default -x direction intersects one of the sections. The second shot changes
the aim slightly off the -x axis, with different results—the LOS thickness is now longer.
Obliq_in changed as well because the ray is no longer perpendicular to the tangent at the point
of intersection. Notice that the direction was not specified using a unit vector but was reported
as one; the conversion to a unit vector is handled automatically by NIRT. The third shot is a
more drastic change of direction, from the -x to positive z. As there are no portions of the region
present along that path, a miss is reported.

2.7 Reporting of Overlaps

In many cases, a geometry will have overlaps: errors where a model is assigning two physical
regions to one volume. To demonstrate this behavior, NIRT is reloaded with overlap_example:

nirt> q
Quitting...

user@machine ~ $ nirt nirt_example.g overlap_example
BRL-CAD Release 7.13.0 Natalie’s Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: ‘nirt_example.g’
Building the directory...
Get trees...
Prepping the geometry...
Object ‘overlap_example’ processed
Database title: ‘Example BRL-CAD Database’
Database units: ‘mm’
model_min = (-3, -1, -2) model_max = (3, 1, 2)
nirt> backout 1
nirt> s
Origin (x y z) = (7.48331477 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)

7

Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
all_cubes.r (3.0000 0.0000 0.0000) 6.0000 0.0000
OVERLAP: ‘center_overlap.r’ and ‘all_cubes.r’ xyz_in=(1 0 0) los=2
nirt>

The last line in the preceding report is reporting that the regions all_cubes.r and center_overlap.r
are both claiming the same volume, starting at (1, 0, 0) and continuing to do so for 2 mm per the
LOS thickness. If the direction and origin are changed to shoot along the z axis:

nirt> dir 0 0 -1
nirt> s
Origin (x y z) = (0.00000000 0.00000000 7.48331477) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (0.00000000 0.00000000 -1.00000000) (az el) = (0.00000000 90.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_overlap.r (0.0000 0.0000 2.0000) 1.0000 0.0000
OVERLAP: ‘center_overlap.r’ and ‘all_cubes.r’ xyz_in=(0 0 1) los=2
all_cubes.r (0.0000 0.0000 1.0000) 2.0000 0.0000
center_overlap.r (0.0000 0.0000 -1.0000) 1.0000 0.0000
nirt>

Along that vector, center_overlap.r is encountered first, then all_cubes.r intersecting with
center_overlap.r.

It should be pointed out that overlaps are usually regarded as modeling errors and need to be
corrected unless they are below some previously established threshold for precision in the model.
One of the potential uses of NIRT is to provide detailed information on which regions are
overlapping and where, although tools such as rtcheck typically provide more comprehensive
summaries of overlap problems.

3. Graphical Visualization: NIRT in MGED

The command line interaction provided by NIRT has few options for graphic visualization, but
MGED allows the use and visualization of NIRT rays. MGED provides a nirt command, but
rather than starting an interactive environment, each invocation of the MGED nirt command
casts one ray and returns a report, together with information allowing MGED to graphically plot
the ray on its wireframe view.

The last two lines that appear in the output when the direction vector is changed are a result of how the raytracing library

keeps track of regions internally. Even when in an overlap, the ray is considered to be in only one region at a time. In this
particular overlap situation, it might be either region, so librt selects the region with the lowest bit number (for more information,
see rt_defoverlap in librt/bool.c). If the ray happens to exit the lowest bit number region when it exits the overlap, the active
region changes again and another line is generated. Ultimately, the difference is inconsequential and can be disregarded. Both
reports contain the key information: the overlap to be removed.

8

3.1 Basic Usage

The most important thing to remember when starting to use NIRT in MGED is that the ray
direction is always perpendicular to the viewing plane. In other words, the user is looking in the
direction in which the ray will be cast. There is no option to choose a different direction from
the MGED command line; as a consequence, it may initially look like nothing has happened in
the MGED wireframe. The report on the command line will print out, but the user will have to
change the direction from which the model is being viewed in MGED before the graphical
results will be visible.

Another important point to remember about using NIRT in MGED is that the user does not
specify objects as arguments to the MGED nirt command. Even if supplied with objects, it will
not use them—the objects used are those active in MGED’s wireframe view.

For example, load nirt_example.g in MGED, draw center_cube.r, set the view direction to
a front view looking down the negative x axis, and run the MGED nirt command (figure 2):

mged> draw center_cube.r
mged> ae 0 0
mged> nirt

Firing from view center...
Origin (x y z) = (0.00 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
center_cube.r (1.000 0.000 0.000) 2.00 0.000

mged>

Figure 2. View of wireframe immediately

after running NIRT within MGED.

9

Select the MGED view window and press “3” to view the path of the ray (figure 3).

Figure 3. View of wireframe after

changing view direction,
showing path of NIRT ray.

Because the ray encountered only a single region, the only visible path drawn is the intersection
path of the ray and the region (the light blue line). The region intersection was backed out to the
first intersection with that region, despite the origination point of the ray being at the center of
the sphere.

Note: When a miss is reported by NIRT, no line is drawn in the wireframe view.

3.2 Backing Out With NIRT in MGED

Because NIRT’s interactive mode cannot be used while in MGED, the b flag must be provided to
the invocation of the MGED nirt command to back out the origination point while using NIRT
within MGED. For comparison purposes, it is more instructive to examine
left_and_right_cubes.r than center_cube.r. To generate a “no backout” control view, the display
is cleared, left_and_right_cubes.r is drawn, the view direction is set, NIRT (no b flag) is run, and
the view is switched to view the ray path (figure 4):

mged> B left_and_right_cubes.r
mged> ae 0 0
mged> nirt

Firing from view center...
Origin (x y z) = (0.00 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
region1.r (-300.000 0.000 0.000) 100.00 0.000

mged> ae 90 0
mged>

10

Figure 4. View of NIRT ray intersecting

left_and_right_cubes.r with ray origin at the
global origin.

The ray did indeed intersect a solid area as indicated in the report but only in one of the two
cubes making up the region. Repeating the steps using the b flag to back the origination point
out produces somewhat different results (figure 5):

mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
left_and_right_cubes.r (3.000 0.000 0.000) 2.00 0.000
left_and_right_cubes.r (-1.000 0.000 0.000) 2.00 0.000

mged> ae 90 0

Figure 5. View of NIRT ray intersecting

left_and_right_cubes.r with ray origin backed out
of the region.

Notice that the ray path is now drawn over a much larger area and multiple colors are used. The
colors have significance; the purple segment in the NIRT ray path corresponds to the empty area
or “gap” between the two solid areas.

3.3 Ray Segment Coloring With NIRT and MGED

NIRT uses colors to visually represent the information seen in text form in its report (table 3).
To illustrate these outputs, a series of cube configurations will be examined. First, all three are

11

Table 3. Ray segment coloring conventions.

Property Color
Solid Alternates between blue and yellow
Gap Purple

Overlap White

drawn at once, the viewing direction is set to the -x direction, nirt -b is run, and the view is
changed to see the results (figure 6):

mged> B left_cube.r center_cube.r right_cube.r
mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (3.000 0.000 0.000) 2.00 0.000
center_cube.r (1.000 0.000 0.000) 2.00 0.000
left_cube.r (-1.000 0.000 0.000) 2.00 0.000

mged> ae 90 0

Figure 6. Side view of aligned individual arb8 cubes with a
single NIRT ray passing through all three cubes.

There are three regions present according to the text report. The first region encountered is that
associated with right_cube.r, and the portion of the ray intersection in that region is light blue.
The second region, center_cube.r, has its intersection with the yellow ray. Note the color of the
intersection in left_cube.r is the same as that shown for right_cube.r. It is important to realize
that the same intersection color in two different areas does NOT imply that they are the same
region, material, etc., nor do different colors guarantee that noncontiguous geometric areas are in
different regions. The color swap is simply an aid when viewing two different contiguous solid
regions that would otherwise be indistinguishable visually. For example, if all three cubes were
unioned into a single region, the wireframe would look identical but the region report would be
very different. In that case, there would be only one region, and only one line color would be
needed (figure 7). To illustrate:

12

mged> B all_cubes.r
mged> ae 0 0
mged> nirt –b

Firing from view center...

Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)

 Region Name Entry (x y z) LOS Obliq_in
all_cubes.r (3.000 0.000 0.000) 6.00 0.000

mged> ae 90 0

Figure 7. View of wireframe of three arb8 cubes combined
into a single region with a NIRT ray passing
through the region on the same path as that used
for the individual arb8 cubes.

Without the color-changing mechanism, the two previous situations would have been visually
identical despite having very different properties.

The other two situations that result in a color change are gaps and overlaps. A gap in NIRT is
any area along the ray path after a solid portion of a region is encountered and before the last
solid portion of a region is encountered that does not intersect a region. As an illustration,
casting the same ray through just left_cube.r and right_cube.r results in a gap where
center_cube.r was in the first example in this section (figure 8):

mged> B left_cube.r right_cube.r
mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (3.000 0.000 0.000) 2.00 0.000
left_cube.r (-1.000 0.000 0.000) 2.00 0.000

mged> ae 90 0

13

Figure 8. View of ray cast through only left_cube.r and
right_cube.r.

To illustrate overlaps, both center_cube.r and all_cubes.r are drawn at the same time (figure 9):

mged> B all_cubes.r center_cube.r
mged> ae 0 0
mged> nirt -b

Firing from view center...
Origin (x y z) = (6.63 0.00 0.00) (h v d) = (0.00 0.00 0.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
all_cubes.r (3.000 0.000 0.000) 6.00 0.000
OVERLAP: ‘center_cube.r’ and ‘all_cubes.r’ xyz_in=(1 0 0) los=2

mged> ae 90 0

Figure 9. Example of an overlap region in a NIRT ray.

3.4 Mouse-Based NIRT Usage

In addition to providing a nirt command on the MGED command line, there is a mouse-based
trigger that can be used. In the MGED menu, selecting Settings->Mouse Behavior->Query Ray
will change the behavior of the mouse. Selecting the view window, placing the mouse at some
point over the model, and performing a click will cast a ray in the view direction, centered at the
point under the mouse pointer rather than the view center.

For this example, bring up left_cube.r, center_cube.r, and right_cube.r:

mged> B left_cube.r center_cube.r right_cube.r
mged>

14

To aid with aiming, the grid overlay (figure 10) is enabled from the menu: Settings->Grid-
>Draw Grid. Grid spacing is adjusted with Settings->Grid Spacing->Autosize:

Figure 10. Grid overlay on MGED

wireframe.

With the mouse behavior set to Query Ray, the following results are from casting rays at
(approximately) the (–2 mm, 0 mm), (0 mm, 0 mm), and (2 mm, 0 mm) grid points:

Firing from (-1.992832, -4.000000, -0.028674)...
Origin (x y z) = (-1.99 -10.63 -0.03) (h v d) = (-1.99 -0.03 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
left_cube.r (-1.993 -1.000 -0.029) 2.00 0.000

Firing from (0.014337, -4.000000, -0.000000)...
Origin (x y z) = (0.01 -10.63 -0.00) (h v d) = (0.01 0.00 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
center_cube.r (0.014 -1.000 0.000) 2.00 0.000

Firing from (2.021505, -4.000000, -0.028674)...
Origin (x y z) = (2.02 -10.63 -0.03) (h v d) = (2.02 -0.03 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (2.022 -1.000 -0.029) 2.00 0.000

Notice the entry points are off from the target values by small but significant amounts. A more
precise way to do this analysis is to use the “snap to grid” feature. This feature is enabled by
selecting Modes->Snap To Grid. Repeating this ray casts:

Firing from (-2.000000, -4.000000, -0.000000)...
Origin (x y z) = (-2.00 -10.63 -0.00) (h v d) = (-2.00 0.00 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
left_cube.r (-2.000 -1.000 0.000) 2.00 0.000

Firing from (0.000000, -4.000000, -0.000000)...
Origin (x y z) = (0.00 -10.63 -0.00) (h v d) = (-0.00 0.00 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
center_cube.r (0.000 -1.000 0.000) 2.00 0.000

15

Firing from (2.000000, -4.000000, -0.000000)...
Origin (x y z) = (2.00 -10.63 -0.00) (h v d) = (2.00 0.00 4.00)
Direction (x y z) = (-0.0000 1.0000 0.0000) (az el) = (-90.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (2.000 -1.000 0.000) 2.00 0.000

These values are exact thanks to the corrections provided by the snap to grid mode.

4. Configuring NIRT With the Query Ray Control Panel

When using NIRT within MGED, some of its settings can be changed through a graphical dialog
found in the menu: MGED’s Tools->Query Ray Control Panel. This section will describe the
basic options. More advanced settings will be covered later.

4.1 Enabling and Disabling Mouse-Based NIRT Ray Casting

Earlier, mouse-based NIRT ray casting was enabled via a menu option. The Query Ray Control
Panel offers a more convenient option for toggling the same behavior via the Mouse Active
check box (figure 11) in the lower left corner of the dialog box. Selecting this check box and
clicking Apply will activate the mouse as a trigger for a ray cast. Clearing the Mouse Active
check box and clicking Apply will restore the default behavior.

Figure 11. MGED’s Query Ray Control Panel with
the Mouse Active check box circled.

16

4.2 Customizing NIRT Coloring in MGED

Although the default colors normally work well, it is possible to adjust the colors used for
regions, overlaps, and gaps via the Query Ray Control Panel (figure 12). The odd and even
colors correspond to solid areas of regions, void is a gap between regions, and overlap is the
color for overlapping regions. Select a color by typing in an RGB color designation directly or
using the drop-down menu visible on the right end of each color entry (figure 13). If the default
color listings are insufficient, the Color Tool can be used for more fine-tuned selection (figure
14).

Figure 12. MGED’s Query Ray Control Panel with

the Query Ray Colors circled.

17

Figure 13. MGED’s Query Ray Control Panel with an

example color list selected.

Figure 14. MGED’s color tool.

4.3 Customizing the Pseudo-Primitive Base Name

MGED and NIRT use “pseudo” primitives to describe the actual graphical lines. They will not
behave like “normal” primitives, but they do need a name. By default, these names are the string

18

“query_ray” and the color used for the string. For example, the pseudo-primitive list after
running NIRT on the cube example (figure 15) with a gap is shown here:

mged> who p
query_rayffff00 query_rayffff query_rayff00ff

Figure 15. Wireframe view of a NIRT ray using multiple
colors.

This naming convention is used almost completely as an internal mechanism by MGED and
NIRT. For example, an l command on query_rayffff does not work:

mged> l query_rayffff
rt_db_get_internal(query_rayffff) failure

However, it is possible to use these names to erase the NIRT line segments from the drawing.
For example, to remove the purple line segments from the wireframe, use the command:

mged> erase query_rayff00ff

This will remove only the purple line segment and leave the others (figure 16).

Figure 16. Wireframe view of the NIRT ray after erasing
query_rayff00ff.

19

The Query Ray Control Panel also offers a way to customize the base name used for these
pseudo-primitives (figure 17). Changing the Base Name from query_ray to line_segment and
rerunning NIRT results in pseudo-primitives named:

mged> who p
 line_segmentffff00 line_segmentffff line_segmentff00ff

Figure 17. MGED’s Query Ray Control Panel showing a
new Base Name.

4.4 Echoing the Internal nirt Command

The Echo Cmd check box in the Effects row allows the user to enable/disable the printing of the
internal nirt command being run by MGED (figure 18).

20

Figure 18. MGED’s Query Ray Control Panel with the Echo
Cmd check box circled.

For example, with Echo Cmd selected, casting a ray into the last example in the previous section
results in:

nirt -e fmt r “”; fmt h “”; fmt p “”; fmt m “”; fmt o “”; fmt f “”; fmt g “” -e fmt p
 “%e %e %e %e\ n” x_in y_in z_in los -e xyz 4.000000 0.022222 0.011111;dir -1.000000
-0.000000 0.000000; s -e fmt r “\ n” ; fmt p “”; fmt o “%e %e %e %e\ n” ov_x_in ov_y_in
ov_z_in ov_los -e xyz 4.000000 0.022222 0.011111;dir -1.000000 -0.000000 0.000000; s
-e fmt r “\ nOrigin (x y z) = (%.2f %.2f %.2f) (h v d) = (%.2f %.2f %.2f)\ nDirection
(x y z) = (%.4f %.4f %.4f) (az el) = (%.2f %.2f)\ n” x_orig y_orig z_orig h v d_orig
x_dir y_dir z_dir a e -e fmt h “ Region Name Entry (x y z)
 LOS Obliq_in\ n”; fmt p “%-20s (%9.3f %9.3f %9.3f) %8.2f %8.3f\ n” reg_name x_in
y_in z_in los obliq_in; fmt f “”; fmt m “You missed the target\ n”; fmt o “OVERLAP:
’%s’ and ‘%s’ xyz_in=(%g %g %g) los=%g\ n” ov_reg1_name ov_reg2_name ov_x_in ov_y_in
ov_z_in ov_los; fmt g “” -e xyz 4.000000 0.022222 0.011111;dir -1.000000 -0.000000
0.000000; s -b nirt_example.g right_cube.r center_cube.r left_cube.r

Firing from (4.000000, 0.022222, 0.011111)...
Origin (x y z) = (10.63 0.02 0.01) (h v d) = (0.02 0.01 4.00)
Direction (x y z) = (-1.0000 -0.0000 0.0000) (az el) = (0.00 -0.00)
 Region Name Entry (x y z) LOS Obliq_in
right_cube.r (3.000 0.022 0.011) 2.00 0.000
center_cube.r (1.000 0.022 0.011) 2.00 0.000
left_cube.r (-1.000 0.022 0.011) 2.00 0.000

This feature is primarily useful for debugging or scripting outside of MGED. Additional
information regarding debugging in NIRT can be found in appendix A.

21

4.5 Selecting Graphical and Textual Output

By default, NIRT in MGED outputs both graphical and text-based output. This is reflected in the
drop-down menu on the right side of the Effects row in the Query Ray Control Panel, which is
set to Both (figure 19). The other options in the drop-down menu allow the user to specify only
Graphics (no text report is printed) or only Text (no ray path is drawn in the wireframe).

Figure 19. MGED’s Query Ray Control Panel
with the Effects drop-down menu
shown.

5. Reporting Options

Up until this point, only the default output configuration of NIRT has been used. Much of the
power of NIRT comes from taking that output and changing the format and information to
supply precisely what is needed for any given purpose.

5.1 How to Change the Reporting Format

The f option allows NIRT to load customized formatting files that change its reporting style. In
addition to the default style used thus far in this report, NIRT has several built-in options for
convenient formatting. Running nirt -L prints out a list of available built-in formats with a
description of each:

22

user@machine ~ $ nirt -L
csv-gap - Comma Separated Value Output Formatting with Gap Reporting
entryexit - Variation on Standard format that prints Entry and Exit points rather than LOS.
csv - Comma Separated Value Output Formatting
gap2 - Reporting with Gap input point, output point and LOS
gap1 - Reporting with Gap Input Point and LOS
default - Standard NIRT Reporting Format

To use a particular format, the name on the left (csv, gap1, etc.) is supplied as an argument to the
f flag.

For example, cases where data needs to be imported into a spreadsheet can benefit from using
comma-separated-variable (csv) output formatting. The individual cube regions are loaded and a
ray cast:

user@machine ~ $ nirt -b -f csv nirt_example.g left_cube.r center_cube.r right_cube.r
BRL-CAD Release 7.13.0 Natalie’s Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: ‘nirt_example.g’
Building the directory...
Get trees...
Prepping the geometry...
Objects ‘left_cube.r’ ‘center_cube.r’ ‘right_cube.r’ processed
Database title: ‘Example BRL-CAD Database’
Database units: ‘mm’
model_min = (-3, -1, -1) model_max = (3, 1, 1)
nirt> s
Ray:
x_orig,y_orig,z_orig,d_orig,h,v,x_dir,y_dir,z_dir,az,el
6.63324958,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,-1.00000000,0.000000...

Results:
reg_name,path_name,reg_id,x_in,y_in,z_in,d_in,x_out,y_out,z_out,d_out,los,scaled_los,o...
”right_cube.r”,”/right_cube.r”,1002,3.000000,0.000000,0.000000,3.000000,1.000000,0.000...
”center_cube.r”,”/center_cube.r”,1000,1.000000,0.000000,0.000000,1.000000,-1.000000,0....
”left_cube.r”,”/left_cube.r”,1001,-1.000000,0.000000,0.000000,-1.000000,-3.000000,0.00...

The output of the s command is then copied to a file (for example, test.csv) and imported into a
spreadsheet (figure 20).

Since copying to a file is impractical in many cases, NIRT provides an interactive command
called dest which can specify an output file. In the previous case, the test.csv file is created
easily:

nirt> dest test.csv
nirt> s

23

Figure 20. Shot command output file imported into a spreadsheet.

The file contents match the previous output:

Ray:
x_orig,y_orig,z_orig,d_orig,h,v,x_dir,y_dir,z_dir,az,el
6.63324958,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,-1.00000000,0.000000...

Results:
reg_name,path_name,reg_id,x_in,y_in,z_in,d_in,x_out,y_out,z_out,d_out,los,scaled_los,o...
“right_cube.r”,“/right_cube.r”,1002,3.000000,0.000000,0.000000,3.000000,1.000000,0.000...
“center_cube.r”,“/center_cube.r”,1000,1.000000,0.000000,0.000000,1.000000,-1.000000,0....
“left_cube.r”, “/left_cube.r”,1001,-1.000000,0.000000,0.000000,-1.000000,-3.000000,0.00...

To restore output to the command line, use dest default to redirect to standard output:

nirt> dest default

When dealing with spaces between models, it is sometimes advantageous to report gaps in
NIRT’s output. MGED’s visualization routines show gaps between regions as purple lines, but
the default text report does not include information about gaps. Sometimes it is desirable to get
exact information on gaps, particularly when they represent errors in a model. The gap1 and
gap2 formats will include information about gaps. Running NIRT on the left_and_right_cubes.r
object with backout enabled provides an example:

user@machine ~ $ nirt -b -f gap2 nirt_example.g left_and_right_cubes.r
BRL-CAD Release 7.13.0 Natalie’s Interactive Ray Tracer
 Tue, 26 Aug 2008 23:21:32 -0400, Compilation 2
 user@localhost:/usr/brlcad
Database file: ‘nirt_example.g’
Building the directory...
Get trees...

24

Prepping the geometry...
Object ‘left_and_right_cubes.r’ processed
Database title: ‘Example BRL-CAD Database’
Database units: ‘mm’
model_min = (-3, -1, -1) model_max = (3, 1, 1)
nirt> s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
GAP: xyz_in=(1 0 0) xyz_out=(-1 0 0) los=2
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

5.2 Handling Attribute Reporting

The default command line reporting format lists an Attrib column where attributes may be
printed but does not print any as default output. Including attributes in a NIRT report requires
adding attributes in question to the attributes table using the attr command. For example, if the
user wants the report to identify the rgb color being used for each region:

user@machine ~ $ nirt -b nirt_example.g left_cube_color.r center_cube_color.r right_cube_color.r
nirt> attr rgb
nirt> attr -p
”rgb”
nirt> s

Get trees...
Prepping the geometry...
Objects ‘left_cube_color.r’ ‘center_cube_color.r’ ‘right_cube_color.r’ processed
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
right_cube_color.r (3.0000 0.0000 0.0000) 2.0000 0.0000 rgb=255/0/0
center_cube_color.r (1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/255/0
left_cube_color.r (-1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/0/255

Notice how the report now includes the rgb attribute for each region. The p flag prints the
current list of attributes to include. In the previous case, it’s simply the “rgb” attribute. An f
option can be supplied to flush all entries and clear the table.

nirt> attr -f
nirt> attr –p

Multiple attributes can also be specified:

nirt> attr rgb region
nirt> attr -p
”rgb”
”region”
nirt> s

Get trees...
Prepping the geometry...
Objects ‘left_cube_color.r’ ‘center_cube_color.r’ ‘right_cube_color.r’ processed
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)

25

Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
right_cube_color.r (3.0000 0.0000 0.0000) 2.0000 0.0000 rgb=255/0/0 region=R
center_cube_color.r (1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/255/0 region=R
left_cube_color.r (-1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/0/255 region=R

If the user wishes to add yet another attribute, it could be appended to the current list with
another attr command.

To provide attributes to the list on startup, the A option will add its arguments to the list:

user@machine ~ $ nirt -b -A rgb nirt_example.g left_cube_color.r center_cube_color.r
right_cube_color.r
BRL-CAD Release 7.13.0 Natalie’s Interactive Ray Tracer
 Mon, 25 Aug 2008 15:14:03 -0400, Compilation 1
 user@localhost:/usr/brlcad
Database file: ‘nirt_example.g’
Building the directory...
Get trees...
Prepping the geometry...
Objects ‘left_cube_color.r’ ‘center_cube_color.r’ ‘right_cube_color.r’ processed
Database title: ‘Example BRL-CAD Database’
Database units: ‘mm’
model_min = (-3, -1, -1) model_max = (3, 1, 1)
nirt> s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000...
 Region Name Entry (x y z) LOS Obliq_in Attrib
right_cube_color.r (3.0000 0.0000 0.0000) 2.0000 0.0000 rgb=255/0/0
center_cube_color.r (1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/255/0
left_cube_color.r (-1.0000 0.0000 0.0000) 2.0000 0.0000 rgb=0/0/255

Note: Reporting attributes when running NIRT from within MGED is more involved. This will

be covered later.

5.3 Changing Units

By default, NIRT’s interactive command line mode reads and writes all dimensions in
millimeters, regardless of the units set in the geometry file. This is configurable via the units
command, which will accept mm, cm, m, in, and ft as arguments or print the current unit with no
arguments. Using center_cube.r as an example:

nirt> units
units = ‘mm’
nirt> s
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000
nirt> units m
nirt> s
Origin (x y z) = (0.00346410 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib

26

center_cube.r (0.0010 0.0000 0.0000) 0.0020 0.0000
nirt> units in
nirt> s
Origin (x y z) = (0.13638195 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (0.0394 0.0000 0.0000) 0.0787 0.0000
nirt> units ft
nirt> s
Origin (x y z) = (0.01136516 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (0.0033 0.0000 0.0000) 0.0066 0.0000

When run from within MGED, NIRT uses the current units set within the MGED environment.

6. Other Options

6.1 Silent and Verbose Modes

NIRT supports two behaviors associated with output verbosity. The interactive command line
environment uses the verbose mode by default. Verbose mode prints out the headers containing
information about the BRL-CAD version number, database name, database title, etc., and also
provides the “nirt>” command prompt label. Silent mode used by default inside the MGED
command window does not print any headers or prompt label.

When generating large numbers of results, it is sometimes desirable to switch to silent mode on
the command line. This is accomplished by supplying the s option to nirt. Similarly, in the
MGED window, supplying the v option will produce the full text output of NIRT’s interactive
mode in the MGED window.

6.2 Using Air Regions

Air regions have a special status in BRL-CAD, and by default, NIRT does not report them. If
the user does wish to have air regions reported, the u option is supplied with an argument of 1 to
activate air region reporting. This is illustrated with a center_cube_air.r object:

user@machine $ nirt -s -b -u 0 -f gap2 nirt_example.g left_and_right_cubes.r center_cube_air.r
s
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
GAP: xyz_in=(1 0 0) xyz_out=(-1 0 0) los=2
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

user@machine $ nirt -s -b -u 1 -f gap2 nirt_example.g left_and_right_cubes.r center_cube_air.r
s

27

Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
center_cube_air.r (1.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

In the first case, area in between the cubes of left_and_right_cubes.r is reported as a gap when
gap reporting is enabled. In the second case, center_cube_air.r is treated as a region, and a new
region report line is generated instead of a gap report.

The Query Ray Control Panel also offers a way to select the Use Air option (figure 21):

Figure 21. MGED’s Query Ray Control Panel showing the
Use Air check box.

6.3 Reading an Orientation Matrix and Commands

This option is seldom used manually from the command line. Its primary purpose is to allow
MGED’s saveview command to generate scripts that allow commands run on MGED views to
be repeated on the command line. By default, the saveview MGED command generates scripts
to run rt, so it is necessary to specify nirt with saveview’s e option; for example, saveview -e
nirt tsv.script. Typically, the saveview MGED command generates scripts with a few other
options included, but the important parts are the orientation matrix and eyepoint:

28

#!/bin/sh
nirt -M nirt_example.g ‘right_cube.r’ ‘center_cube.r’ ‘left_cube.r’ <<EOF
orientation 2.480973490458727e-01 4.765905732660485e-01 7.480973490458729e-01 \
 3.894348305183902e-01;
eye_pt 6.000000000000000e+00 4.201245229258262e+00 3.415539237722919e+00;

When this script is run, a NIRT report is generated for a ray cast in the same direction as that
which would have been cast in the original MGED view where the saveview command was run:

machine:~ user$ sh tsv.script
Origin (x y z) = (6.00000000 4.20124523 3.41553924) (h v d) = (0.0000 0.0000 8.0819)
Direction (x y z) = (-0.74240388 -0.51983679 -0.42261826) (az el) = (35.00000000 25.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
right_cube.r (1.4281 1.0000 0.8130) 0.5767 58.6787
center_cube.r (1.0000 0.7002 0.5693) 2.6940 42.0634
left_cube.r (-1.0000 -0.7002 -0.5693) 0.5767 42.0634

Notice the az and el reported are 35 and 25, which correspond to the settings for those values in
MGED when saveview was run.

7. Scripting NIRT

As mentioned in the output formatting section, hand-copying NIRT output can be an
inconvenient way to store results, particularly in cases where large numbers of rays will be cast.
In such cases, it is possible to automate NIRT usage with scripting.

7.1 Command Line Scripts: The e Option

The most straightforward approach to supplying NIRT with a series of commands is to do so in a
string from the command line using the e option. The format of such a string is nirt -e
“command1; command2; ... commandn” model.g object. For example, to cast a ray in the
negative z direction and avoid interactive mode, the following would work:

user@machine ~ $ nirt -b -s -e “dir 0 0 -1; s; q” nirt_example.g all_cubes.r
Origin (x y z) = (0.00000000 0.00000000 6.63324958) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (0.00000000 0.00000000 -1.00000000) (az el) = (0.00000000 90.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
all_cubes.r (0.0000 0.0000 1.0000) 2.0000 0.0000

It’s important to be aware that the order of e and f options matters. They are read in from left to
right, and each option is aware of the effects of the previous options. Using the gap format with
the left_and_right_cubes.r object, both orders of the e and f options produce different results:

29

user@machine ~ $ nirt -b -s -f gap2 -e “s; q” nirt_example.g left_and_right_cubes.r
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
GAP: xyz_in=(1 0 0) xyz_out=(-1 0 0) los=2
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

user@machine ~ $ nirt -b -s -e “s; q” -f gap2 nirt_example.g left_and_right_cubes.r
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

In the second case, the arguments to e were executed before the formatting change was reached.
A final illustration of this behavior uses multiple instances of the e and f options:

user@machine ~ $ nirt -b -s -e “s” -f gap2 -e “s; q” nirt_example.g left_and_right_cubes.r
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000
Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
GAP: xyz_in=(1 0 0) xyz_out=(-1 0 0) los=2
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000

Notice how the commands in the first e option are run without the gap formatting, but the
command in the second is run with gap formatting.

7.2 Script Files: Other Uses of the f Option

Earlier, the f option was used to change the output formatting of NIRT. This is only one instance
of using scripted commands in files to control NIRT. The same principles apply for any
command normally available during an interactive NIRT session.

Instead of hand-copying the output to a file, as was done in the previous example using tire.g,
a more ambitious goal is to output the results of several different ray casts to a single file without
manual copying. A script file is thus defined as:

testscript: A Scripted NIRT Example
backout 1
dir -1 0 0
s
dir 1 0 0
s
q

30

Because the intent is to have only the output in the file, the s option is supplied to the nirt
command. The output is redirected to a file called output.txt.

nirt -s -f testscript nirt_example.g left_and_right_cubes.r > output.txt

The contents of that file are the text reports of the two rays cast into the model:

Origin (x y z) = (6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (-0.00000000 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (-1.0000 0.0000 0.0000) 2.0000 0.0000
Origin (x y z) = (-6.63324958 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (1.00000000 0.00000000 0.00000000) (az el) = (-180.00000000 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
left_and_right_cubes.r (-3.0000 0.0000 0.0000) 2.0000 0.0000
left_and_right_cubes.r (1.0000 0.0000 0.0000) 2.0000 0.0000

This is useful, but more interesting would be the output in csv format. Fortunately, the f option
can be used multiple times in a single nirt run:

nirt -s -f csv -f testscript nirt_example.g left_and_right_cubes.r > output.csv

As mentioned in the earlier section, when combinations of e and f options were used, using
multiple instances of the f option in this fashion requires paying attention to the left-to-right
order. The csv script in the previous case is executed before testscript. The result is the csv
equivalent of the preceding file:

Ray:
x_orig,y_orig,z_orig,d_orig,h,v,x_dir,y_dir,z_dir,az,el
6.63324958,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,-1.00000000,0.00000...

Results:
reg_name,path_name,reg_id,x_in,y_in,z_in,d_in,x_out,y_out,z_out,d_out,los,scaled_los,...
”left_and_right_cubes.r”,”/left_and_right_cubes.r”,1004,3.000000,0.000000,0.000000,3....
”left_and_right_cubes.r”,”/left_and_right_cubes.r”,1004,-1.000000,0.000000,0.000000,-...

Ray:
x_orig,y_orig,z_orig,d_orig,h,v,x_dir,y_dir,z_dir,az,el
-63324958,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,1.00000000,0.00000...

Results:
reg_name,path_name,reg_id,x_in,y_in,z_in,d_in,x_out,y_out,z_out,d_out,los,scaled_los,...
”left_and_right_cubes.r”,”/left_and_right_cubes.r”,1004,-3.000000,0.000000,0.000000,3...
”left_and_right_cubes.r”,”/left_and_right_cubes.r”,1004,1.000000,0.000000,0.000000,-1...

As before, this format is trivially imported into a spreadsheet (figure 22).

These examples use a standard POSIX-style output redirect to create the file. If this doesn’t work, the script can be edited to

use the dest command instead.

31

Figure 22. The f option output file imported into a spreadsheet.

7.3 Defining a Custom Reporting Format

A final example of the use of the scripting mechanism is constructing a custom-tailored report
format and specifying it using the f option. In the case of a custom file stored in a user directory,
the full file name needs to be supplied just like any other script, e.g., nirt -f my_report_format.
nrt model.g item.

Generally, it is simplest to use one of the predefined files as a starting point. For example, if the
user prefers to have commas between xyz coordinates but otherwise wishes to use the default
format, the default.nrt file from the installed BRL-CAD system is copied to the local

directory and renamed default-commas.nrt:

machine:~ user$ cp /usr/brlcad/share/brlcad/7.12.5/nirt/default.nrt default-commas.nrt

machine:~ user$ more default-commas.nrt
default.nrt
Description: default - Standard NIRT Reporting Format
fmt r “Origin (x y z) = (%.8f %.8f %.8f) (h v d) = (%.4f %.4f %.4f)\ nDirection (x y z)...
fmt h “ Region Name Entry (x y z) LOS Obliq_in Attrib\ n”
fmt p “%-20s (%9.4f %9.4f %9.4f) %8.4f %8.4f %s\ n” reg_name x_in y_in z_in los obliq_in...
fmt m “You missed the target\ n”
fmt o “OVERLAP: ‘%s’ and ‘%s’ xyz_in=(%g %g %g) los=%g\ n” ov_reg1_name ov_reg2_name ov_...

Next, the file is edited to replace all of the spaces in the point strings with commas:

32

machine:~ user$ more default-commas.nrt
fmt r “Origin (x,y,z) = (%.8f,%.8f,%.8f) (h,v,d) = (%.4f,%.4f,%.4f)\ nDirection (x,y,z...
fmt h “ Region Name Entry (x,y,z) LOS Obliq_in Attrib\ n”
fmt p “%-20s (%9.4f,%9.4f,%9.4f) %8.4f %8.4f %s\ n” reg_name x_in y_in z_in los obliq_i...
fmt f “”
fmt m “You missed the target\ n”
fmt o “OVERLAP: ‘%s’ and ‘%s’ xyz_in=(%g,%g,%g) los=%g\ n” ov_reg1_name ov_reg2_name ov...
fmt g “”

Running the center_cube.r object:

machine:~ user$ nirt -s -b -f default-commas.nrt nirt_example.g center_cube.r
s
Origin (x,y,z) = (3.46410162,0.00000000,0.00000000) (h,v,d) = (0.0000,0.0000,0.0000)
Direction (x,y,z) = (-1.00000000,0.00000000,0.00000000) (az,el) = (0.00000000,0.00000000)
 Region Name Entry (x,y,z) LOS Obliq_in Attrib
center_cube.r (1.0000, 0.0000, 0.0000) 2.0000 0.0000

Notice the commas now present between points. This file can be saved and reused on any NIRT
task.

Note: If a user wishes to save the current session configuration of an interactive command line
NIRT session at any time, they can always use the dump interactive command to print out

a script file that contains all the relevant commands required to restore a specific

configuration. By default, this file is called nirt_state. The statefile interactive

command is used to change that name if desired. If a user has used in-session commands

to alter formatting but wants to preserve them for later use or as a starting point for a new

report format, the output of dump is an excellent starting point.

7.4 Customizing Report Output in MGED

The Query Ray Control Panel discussed earlier also provides access to the reporting logic used
by MGED when calling NIRT, but it does not provide any graphical aid when it comes to laying
out the formatting. All layout logic must be defined with the same syntax already seen for the
script files. Customizations of this logic in MGED are done using the Advanced option in the
lower right corner of the Query Ray Control Panel, which brings up the Query Ray Advanced
Settings dialog box (figure 23).

Note also the last line of this dialog box, which provides a place for script commands to be
executed before the internal s command is run. It functions just like the -e option on the normal
command line, including the syntax of separating all commands except the last one with
semicolons. This is useful for setup not possible in normal command line operation, as
illustrated in the next section.

33

Figure 23. MGED’s Query Ray Advanced Settings dialog box.

7.5 Reporting Attributes in MGED: Advanced Formatting and Scripting

As mentioned earlier, reporting attributes with NIRT inside of MGED is more involved than the
strictly command line interface allows. In default NIRT reporting inside MGED, the attributes
column is not even listed. Attributes can be reported with NIRT in MGED, but it requires
custom formatting and scripting.

The first step is to open the Query Ray Advanced Settings dialog box. Examining the default
NIRT formatting file used on the command line reveals that the partition formatting string needs
a %s variable added and the attributes variable in position to be supplied to the %s. Also, the
Attrib column header is added to Head (figure 24).

Figure 24. Query Ray Advanced Settings dialog box showing changes to values (white
highlight).

The second step is to use the Script line in this dialog box to add rgb to the attributes list.
Because the script line is run before MGED sends the s command, the attributes list will be
updated by the time the ray is cast and the subsequent report is generated.

34

Figure 25. Adding commands to the Script line in the advanced settings dialog.

Unless graphical visualization is needed, it is probably simpler to work from the NIRT
interactive command line in cases where a lot of adjustment of attribute reporting is needed.
However, if MGED is needed, this technique will allow custom reports inside of MGED that
include attributes.

7.6 Available Information for Inclusion in Reports

There are many cases where the user may want to change what NIRT is reporting instead of, or
in addition to, the formatting of the reports. NIRT internally defines values that it supports as
output options, most of which are not reported in the default format for the sake of brevity and
clarity. It also defines “events” corresponding to various model geometric states encountered by
the ray, which are used to trigger print events (table 4). The available variables pertain to the
ray, partitions, overlaps, and gaps. Other event options typically use only labeling strings. The
variables are listed in appendix B and can be used to change reported information. The csv
output format is one example of such use.

Table 4. Report event types.

Event Description
r Ray. A ray is cast. The formatting associated with r will print

regardless of whether a region is encountered.
h Header. First output after a ray hits anything. Formatting at h is

output once per ray.
p Partition. Output for each region encountered by the ray. Typically,

this will be where most of the information about a model is reported.
f Footnote. Last output statement after a ray hits anything; a footnote

line after the ray has completed its evaluations; once per ray.
g Gap. Output written once for each gap the ray may encounter.
m Miss. If triggered, prints a message that nothing was hit; maximum

once per ray.
o Overlap. Output written once for each overlap along the ray.

35

8. Summary

• NIRT is the standard, interactive ray trace query tool used for obtaining precise, detailed
information about specific areas of a model via individual ray queries.

• NIRT offers a wide variety of formatting options for various analysis needs as well as
support for custom formats.

• Running NIRT within MGED offers additional graphical feedback not available when run
outside of MGED.

• NIRT provides both command-line and file-based scripting to allow for powerful,
automated, custom analyses.

36

INTENTIONALLY LEFT BLANK.

37

Appendix A. Debugging Options

In cases where problems are being encountered, it is possible to use debugging options to print
additional information related to the raytracing process. NIRT exposes two levels of debugging:
the core raytracing library and NIRT itself.

A.1 librt Debugging Information

In cases where detailed behavior of the core raytracing routines is of interest, it is possible to use
the x (lower case “x”) option to print additional diagnostic messages. (See the librt header files
for more details about the very extensive debugging options provided.)

machine:~ user$ nirt -s -b -x 0x002 -e “s; q” nirt_example.g center_cube.r

 **********shootray cpu=0 0,0 lvl=0 a_onehit=0 (NIRT ray)
 Pnt (3.4641016151377543864, 0, 0)
 Dir (-1, 0, 0)
 ------Partition list passed to a_hit() routine
 00604d50: PT center_cube.s (ARB8#0) center_cube.s (ARB8#0) (2.4641,4.4641)
 InHIT dist=2.4641 (surf 5)
 OutHIT dist=4.4641 (surf 4)
 Primitives: center_cube.s,
 Untrimmed Segments spanning this interval:
 0680d600: SEG center_cube.s (2.4641,4.4641) st_bit=0 xray#=0
 Region: /center_cube.r

Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000
----------shootray cpu=0 0,0 lvl=0 (NIRT ray) HIT ret=1

A.2 NIRT Debugging Information

NIRT itself also provides debugging information. It is accessed using the X option.† NIRT
provides five different debug flags, as seen in nirt.h:

/** FLAG VALUES FOR nirt_debug */
#define DEBUG_INTERACT 0x001
#define DEBUG_SCRIPTS 0x002
#define DEBUG_MAT 0x004
#define DEBUG_BACKOUT 0x008
#define DEBUG_HITS 0x010

0x001 and 0x002 pertain to interaction and scripts, respectively:

librt’s diagnostic setting can also be set in the interactive environment with the libdebug command.
†The nirt level diagnostics can be set in the interactive environment with the debug command.

38

machine:~ user$ nirt -s -b -X 0x001 -e “s; q” nirt_example.g center_cube.r
interact(READING_STRING, 603c10)...
sgetc((null)) ‘(null)’ ‘(null)’... initializing
sgetc(s; q) ‘(null)’ ‘(null)’... initializing
returning ‘s’ (o163)
line_buffer[0] = ‘s’ (o163)
sgetc(s; q) ‘s; q’ ‘; q’... returning ‘;’ (o73)
Line buffer contains ‘s’
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000
sgetc(s; q) ‘s; q’ ‘ q’... returning ‘ ‘ (o40)
Skipping ‘ ‘
sgetc(s; q) ‘s; q’ ‘q’... returning ‘q’ (o161)
line_buffer[0] = ‘q’ (o161)
sgetc(s; q) ‘s; q’ ‘’... returning EOS
Line buffer contains ‘q’

machine:~ user$ nirt -s -b -X 0x002 -e “s; q” nirt_example.g center_cube.r
interact(READING_STRING, 603c10)...
sgetc((null)) ‘(null)’ ‘(null)’... initializing
sgetc(s; q) ‘(null)’ ‘(null)’... initializing
returning ‘s’ (o163)
line_buffer[0] = ‘s’ (o163)
sgetc(s; q) ‘s; q’ ‘; q’... returning ‘;’ (o73)
Line buffer contains ‘s’
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000
sgetc(s; q) ‘s; q’ ‘ q’... returning ‘ ‘ (o40)
Skipping ‘ ‘
sgetc(s; q) ‘s; q’ ‘q’... returning ‘q’ (o161)
line_buffer[0] = ‘q’ (o161)
sgetc(s; q) ‘s; q’ ‘’... returning EOS
Line buffer contains ‘q’
user@localhost $ nirt -s -b -X 0x002 -e “s; q” nirt_example.g center_cube.r
- - - - - - - The command-line scripts - - - - - - -
1. script string ‘s; q’
-
- - - - - - - The command-line scripts - - - - - - -
1. script string ‘s; q’
-
 Attempting to run literal ‘s; q’
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000

The 0x004 DEBUG_MAT flag pertains to the M option seen earlier in the saveview MGED
command example that supplies a matrix for NIRT to read. Adding the debug option to the
script triggers a printout of the matrix:

39

#!/bin/sh
nirt -M -X 0x004 nirt_example.g center_cube.r <<EOF
orientation 5.000000000000000e-01 5.000000000000001e-01 5.000000000000000e-01 4.999999999999999e-
01;
eye_pt 0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00;

machine:~ user$ sh tsv.script
MATRIX view matrix:
 -0.000 1.000 0.000 0.000
 0.000 0.000 1.000 0.000
 1.000 0.000 -0.000 0.000
 0.000 0.000 0.000 1.000
Origin (x y z) = (0.00000000 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 -0.00000000 0.00000000) (az el) = (0.00000000 -0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 -0.0000) 2.0000 0.0000

DEBUG_BACKOUT and DEBUG_HITS pertain to the backout option and geometry hits:

machine:~ user$ nirt -s -b -X 0x008 -e “s; q” nirt_example.g center_cube.r
Backing out 3.4641 units to (3.4641 0 0), shooting dir is (-1 0 0)
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000

machine:~ user$ nirt -s -b -X 0x010 -e “s; q” nirt_example.g center_cube.r
Origin (x y z) = (3.46410162 0.00000000 0.00000000) (h v d) = (0.0000 0.0000 0.0000)
Direction (x y z) = (-1.00000000 0.00000000 0.00000000) (az el) = (0.00000000 0.00000000)
 Region Name Entry (x y z) LOS Obliq_in Attrib
Partition 1 entry: (1, 0, 0) exit: (-1, 0, 0)
center_cube.r (1.0000 0.0000 0.0000) 2.0000 0.0000

40

INTENTIONALLY LEFT BLANK.

41

Appendix B. Report Format Variable Listings

42

Table B-1. Ray variables.

Command Variables
x_orig x coordinate of ray origination point
y_orig y coordinate of ray origination point
z_orig z coordinate of ray origination point
d_orig d coordinate of ray origination point

h h coordinate for the entire ray
v v coordinate for the entire ray

x_dir x component of direction vector
y_dir y component of direction vector
z_dir z component of direction vector

a Azimuth of view (i.e., of ray direction)
e Elevation of view (i.e., of ray direction)

Table B-2. Partition variables.

Command Variables
attributes A string variable consisting of the names and values of the attributes

requested by the attr interactive command or the -A command line
option

x_in x coordinate of entry into current region
y_in y coordinate of entry into current region
z_in z coordinate of entry into current region
d_in d coordinate of entry into current region

x_out x coordinate of exit from current region
y_out y coordinate of exit from current region
z_out z coordinate of exit from current region
d_out d coordinate of exit from current region

los Line-of-sight distance through current region
scaled_los Scaled line of sight: product of line-of-sight distance through current

region and region soliditya (sometimes called “percent LOS’’)

path_name Full path name of current region
reg_name Name of current region

reg_id Region ID of current region
claimant_count Number of regions claiming this partition (i.e., participating in a

retained overlap)
claimant_list Space-separated list of names of regions claiming this partition (i.e.,

participating in a retained overlap)
claimant_listn Same as claimant_list, except that it is newline- rather than space-

separated
obliq_in Entry obliquity for current region
obliq_out Exit obliquity for current region
nm_x_in x component of entry normal vector
nm_y_in y component of entry normal vector
nm_z_in z component of entry normal vector
nm_h_in h component of entry normal vector

43

Table B-2. Partition variables (continued).

nm_v_in v component of entry normal vector
nm_d_in d component of entry normal vector

nm_x_out x component of exit normal vector
nm_y_out y component of exit normal vector
nm_z_out z component of exit normal vector
nm_h_out h component of exit normal vector
nm_v_out v component of exit normal vector
nm_d_out d component of exit normal vector

surf_num_in Entry-surface ID of entry solid
surf_num_out Exit-surface ID of exit solid

aRegion solidity refers to a thickness equivalence factor often used to simulate material properties
like density.

Table B-3. Overlap variables.

Command Overlap Variables

ov_reg1_name Name of one of the overlapping regions

ov_reg2_name Name of the other overlapping region

ov_reg1_id Region ID of one of the overlapping regions

ov_reg2_id Region ID of the other overlapping region

ov_sol_in Name of one of the overlapping solids

ov_sol_out Name of the other overlapping solid

ov_los Line-of-sight distance through the overlap

ov_x_in x coordinate of entry into overlap

ov_y_in y coordinate of entry into overlap

ov_z_in z coordinate of entry into overlap

ov_d_in d coordinate of entry into overlap

ov_x_out x coordinate of exit from overlap

ov_y_out y coordinate of exit from overlap

ov_z_out z coordinate of exit from overlap

ov_d_out d coordinate of exit from overlap

Table B-4. Gap variables.

Command Variables

x_gap_in x coordinate of entry into gap

y_gap_in y coordinate of entry into gap

z_gap_in z coordinate of entry into gap

gap_los Line-of-sight distance through gap

NO. OF
COPIES ORGANIZATION

44

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 only) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC HRR
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK PE
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

45

 1 ASST SECY ARMY
 (CD ACQSTN LOGISTICS & TECH
 only) SAAL ZP RM 2E661
 103 ARMY PENTAGON
 WASHINGTON DC 20310-0103

 1 ASST SECY ARMY
 (CD ACQSTN LOGISTICS & TECH
 only) SAAL ZS RM 3E448
 103 ARMY PENTAGON
 WASHINGTON DC 20310-0103

 1 DIRECTOR FORCE DEV
 (CD DAPR FDZ
 only) RM 3A522
 460 ARMY PENTAGON
 WASHINGTON DC 20310-0460

 1 US ARMY TRADOC ANL CTR
 ATRC W
 A KEINTZ
 WSMR NM 88002-5502

 1 USARL
 AMSRD ARL SL E
 R FLORES
 WSMR NM 88002-5513

 2 SURVICE ENGRG
 J DUVALL
 4695 MILLENNIUM DR
 BELCAMP MD 21017-1505

 4 QUANTUM RSRCH INTRNTL
 M JERNIGAN
 2014 TOLLGATE RD
 STE 203
 BEL AIR MD 21015

 2 APPLIED RSRCH ASSOC
 A ROSS
 4690 MILLENNIUM DR
 STE 210
 BELCAMP MD 21017-1505

 2 MANTECH SRS TECHLGY
 T BROWDER
 1984 LEWIS TURNER BLVD
 FORT WALTON BEACH FL 32547

 2 NVL SURFC WARFARE CTR
 DAHLGREN
 D DICKINSON G24
 6138 NORC AVE STE 313
 DAHLGREN VA 22448-5157

 1 AFRL
 MUNITIONS DIRCTRT
 N GAGNON
 101 W EGLIN BLVD STE 309
 EGLIN AFB FL 32542

 1 AFRL RWAL
 S STANDLEY
 101 W EGLIN BLVD STE 307
 EGLIN AFB FL 32542

 1 ASC ENDA VULNERABILITY TEAM
 T STALEY
 1970 MONAHAN WAY BLDG 11A
 RM 018V
 WRIGHT PATTERSON AFB OH
 45433-7210

ABERDEEN PROVING GROUND

 1 US ARMY DEV TEST COM
 CSTE DTC TT T
 314 LONGS CORNER RD
 APG MD 21005-5055

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE
 R LAUGHMAN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 36 DIR USARL
 AMSRD ARL SL
 J BEILFUSS
 J FEENEY
 J FRANZ
 M STARKS
 P TANENBAUM
 AMSRD ARL SL B
 G MANNIX

NO. OF
COPIES ORGANIZATION

 46

 AMSRD ARL SL BA
 D FARENWALD (5 CPS)
 A VOGT (5 CPS)
 AMSRD ARL SL BD
 R GROTE (2 CPS)
 AMSRD ARL SL BE
 M PERRY (2 CPS)
 AMSRD ARL SL BG
 P MERGLER (3 CPS)
 AMSRD ARL SL BS
 S SNEAD (10 CPS)
 AMSRD ARL SL BW
 L ROACH (3 CPS)

NO. OF
COPIES ORGANIZATION

 47

 2 NO PRINS MAURITS LAB
 S PRONK
 W BOKKERS
 PO BOX 45
 2280 AA RIJSWIJK ZH
 THE NETHERLANDS

 1 INDUSTRIEANLAGEN
 BETRIEBSGESELLSCHAFT MBH IABG
 D ROSSBERG
 EINSTEINSTRASSE 20
 85521 OTTOBRUNN
 GERMANY

 48

INTENTIONALLY LEFT BLANK.

