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I. INTRODLKXION

Geometry plays a central role in the evaluation of military equipment for its suitability
to fuIfill a particular role. Essentially every question that can be raised about system per-
formance -- survivability, mobility, weighh maintainability -- are a function of geometry.
Thirty years ago geometric dam w extracted from blueprints by hand to make simple
estimates of bullet penetmtion into ahcraft structures or unk hulls. As system evaluations
grew more complicated, vulnerability analysts sought ways to automate the process of pass-
ing geometry information to subsequent ana!ysis codes.

At the Ballistic Research Laboratory that search resuhed in the devel pment of a
?

geometric modeling technique called Combimtorial Geometry (ComGmm) which is a
particular example of what is known today as Solid Modeling (sM). When an applications
code is to be rum the geometric files used to represent ob.iect design are interrogated by a
geometric interface and passed to the applications code itself (see Figure 1).
Nongeometric data is also passed dtiecdy to the code where some system evaluation is
made.

\

KzE1/’
IAPPLICATIONS MODEL I

Figure 1. Geometric Data is Processed Through an Interface Where it is
Combined VWh Other (Nongeometric) Information for Processing in an

1 The original
Mathematical

Applications Model.

Com-Geom method was produced under contract for the BRL by
Applications Group, Inc., Elmsford, NY and was an early precursor for a

current product marketed under the name Synthavision. For example,

“A Geometric Description Technique Suitable for Computer Analysis of Both Nucka.r
and Conventional Vulnerability of Armored Military Vehicles,” MAGI-6701, AD847576,
August 1%9.

“The MAGIC-SAMC Target Amlysis Technique,” Vol VI, AMSAA TR14, April 1%9.
User Manual 1971.
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In the past fifteen Years the princiwl uses of Solid modeling at the BRL have been to
support various vuhembility/lethality codes and neutron r.tansport models In this paper,
we want to highlight two particular issues 1) The first relates to current progress in the
generatio~ display, and mtifimtion of solid geometry. 2) The secmnd is to discuss the
wider application of solid geometric modeling and to give some specific example% Table
1 shows a partial listing of uses for solid models. This list is by no means exhaustive, but
gives some hint of the powerful and varied uses of geometry.

II. WHAT IS SOLID MODELING?

Solid Mtieling is an analytical framework within which three-
dimensional material is completely and unambiguously defined.

This might seem to be a straight form.rd requirement of geometry, but the mqjority of
commercial computer-aided design systems today do not structure their data files so as to
meet the above requirement. Such systems are known as wire-frame or 2 1/2-D modelers
and are quite useful for drafting and visualization. However it is not possible, for exam-
ple, to pass an arbitrary ray through a wire-frame model file and know at every point along
the ray the material properties.

Another way of looking at SM is the following:

Solid Modeli ng is an analytical framework which serves as graphical inmtt
as well as graphical output.

This is an important property of SM data files. They are equally useful for passing
geometry on to other computer codes as they are for viewing geometry.

There are generally two approaches to solid modeling.2 They are

(A) Constructive Solid Modeling,
(B) Boundary file Representation

(1) Explici~
(2) hnplici~

2

MAGIC Computer Simulatio~

MAGIC Computer Simulatio~
71-7-2-2, May-1971.

Vol. 1, User Manual, 61JTCG/ME-71-7-1, July 1971.

Vol. 2, Analysts Manual Parts 1 ati 2, 61JTCG/h@

For an excellent review paper covering solid modeling approache$ see A. A. G.
Requicha and H. B. Voelcker, “Solid Modeling An Historical Summary& Contemporary
As=ssmenL “ IEEWCS Computer Graphics& Applicatio~ March 1982.
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TABLE 1. A LIST OF SOME OF THE APPLICATIONS CODES AND USES TO
WHICH SOLID MODELS PLAY A KEY ROLE AS INPUT.

● Nuclear Survivability

● Ballistic Penetration/Behind-&mor Damage:
- Armor Design/System Configuration
- Survivability/Lethality Predictions
- SPARC/Logistics Model Support

● Weights and Moments
- Calculation of M of I Matrix
- Overturning moments for Nuclear Blast Problem
- Use of moments for Servo Fire Control

calculation

● Infrared/Millimeter Wave Signatures
- All surfacxx and materials are defined in 3 space
- Accounts for perspective
- Passive radiometer prediction
- Radar Cross Section Prediction
- Side-Looking Radar Prediction

● Finite Element Mesh Generation (viaPreprocessor):
- Generation of 3-D Elements
- Variable Level of Subdivision
- Exterior Mesh for Signature Models
- 3-D Mesh for Heat Flow Modeling
- Static/Dynamic Stress Analyses
- Blast/Shock Predictions

● Fiie Control/Vision
- Susceptibility of Vision Elements to Laser

Radiation
- Field-of-View of Vision Blocks

● Aerodynamic/Fluid Flow Amlyses

● Mobility Models

● System Intergration/Engineering Optimization

● wtional Link:
Mission Ikqukements --> Quantitative

System Specs
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Com-Geom belongs to class 1;3 it is a system which uses certain geometric building blocks

called primitives. Examples of pimitives me wious tit-surfaced volumes of four to eight
sides, conic sections and ellipsoids. These entities are placed in space, possibly overlapping
one another; the m=~ng of the overlaps is resolv~ by U* of Wol-n (or logical)
definitions of the three following types

● Intersection

. Difference”

Figure 2a) shows an example of these operations. A section of a connecting rod is

modeled using a combination of plain prfii~ves and cylinders (A through E). In its
unprocessed form shown in a), the file is termed unevaluat~ using only this visual

prompting, the meaning of the logical operations indicated beneath a) is difhcult to infer.
An evaluated or boundary file is shown in Figure 2b) and illustrates the actual results of
the primitive shapes when processed according to the illustrated logic operation.

3 For a discussion of Com-Geom and a technique for interactive editing, see P. H. Deitz,
“Solid Modeling at the US Army Ballistic Research Laboratory,” Proceedings of the
Third Annual Conference and Exposition of the National Computer Graphics
Associatio~ Inc., held 13-16 June, 1982, Vol. II, pp. 949-960.

●

The Union operation takes the combined volume of two intersecting primitives. The
Intersection o~ration takes the common volume of two intersecting primitives. The
Difference operation subtracts the intersecting volume of the second primitive from the
first.
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A- B- C-D+E

Figure 2a Wueframe Representations
of Corn-Geom Building Blocks with
Logic Operations

Figure 2b. Wwefrarne Representations
of COm-Geom Building Blocks
Evaluated Boundary File of Processed
Geometry

Figure 2. Ability to EvaluEte Geometry
Removes Ambiguities in Image Interpretation.

Constructive Solid Geometry is a rather good way to start building objects (since it starts
with a variety of commonly used shapes), but often the final tuning of surfaces is diflicult.

Some modelers use no primitives at all, but deal entirely with surface descriptions.
This approach is called the Boundary File Representation (BFR) and can be chamcterized
by large numbers of flat polygonal approximations to the surfaces being modeled. Such an
approach is called Explicit because the data base actually stores the coordimtes of the sur-
face facets. The data may actually be many sampled points over the surface on an actual
object. Explicit representation has a number of serious problems among which are storage
of many data points and the fixed polygonal patch size characterizing the surface at the
time it is modeled. On the other han~ BFRs generally can model compound surfaces
more easily than Constructive Solid Systems, and hence often have an advantage at the
end of the modeling process.

A Boundary Ftle approach which has come into use more recently is called an Implicit
Representation. In this approach the surface of a modeled object is represented by a
threedimensioml analytical function which itself is characterized by a set of parameters.
Examples of analytical forms for these implicit representations are the Bezier patch and
various forms of splines. When the surface is to be displayed or utilized in some applica-
tions code, points on the surface are calculated anew at the optimum spacing (or resolu-
tion) required to serve the competing constraints of surface accuracy and calculation time.
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Some modelers use no primitives at all, but deal entirely with surface descriptions. 
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of many data points and the fixed polygonal patch size characterizing the surface at the 
time it is modeled. On the other hand, BFRs generally can model compound surfaces 
more easily than Constructive Solid Systems, and hence often have an advantage at the 
end of the modeling process. 

A Boundary File approach which has come into use more recently is called an Implicit 
Representation. In this approach the surface of a modeled object is represented by a 
three-dimensional analytical function which itself is characterized by a set of parameters. 
Examples of analytical forms for these implicit representations are the Bezier patch and 
various forms of splines. When the surface is to be displayed or utilized in some applica
tions code, points on the surface are calculated anew at the optimum spacing (or resolu
tion) required to serve the competing constraints of surface accuracy and calculation time. 
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This capability is known as setting the degree of refinement. This particular method of 
geometric modeling holds some promise for advanced requirements where precision sur
face representations are required. 4,5 

Figure 3 illustrates both the use of implicit boundary representation and four degrees of 
refinement (or resolution).· 

Figure 3. Illustration of Su1:xiivision for an Implicit Boundary Representation and 
Various Degrees of Refinement. The same (implicit) spline representation of a 
sphere is used to calculate four renderings, each at different levels of refinement. 
None of the surface points used for rendering are stored in the data base; they 
are recalculated as required for a specific purpose. 'The cost for higher resolution 
in display is paid in computer cycles. (Courtesy U. of Utah, Ref. 8) 

4 E. Cohen, R. Lyche, R. Riesenfeld, "Discrete B-Splines and Su1:xiivision Techniques in 
Computer-Aided Geometric Design and Computer Graphics," Computer Graphics and 
Image Processing, Vol. 14, No.2, Oct. 1980. 

5 E. Cohen, "Some Mathematical Tools for a Modeller's Workbench," Proceedings of 
Symposium on Computer-Aided Geometry Modeling held Apr 20-22, 1983 at NASA 
Langley, Hampton, VA . 

• Private communication with R. Riesenfeld, U. of Utah. 
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The same spline represenmtion of a sphere is used to dculate the four renderirtgs each at
difTerent levels of refi~men~ None of the surfs= poin~ used for rendering are stored in
the data base, they = r=lculat~ m ~uia for a sr=ific purpose. The cost for higher
resolution in display is paid for in computer cycles.

III. MANIPULATION OF COMGEOM

At the core of any geometric model is a large set of numbers which represents the 3-
space geometry being descri~. UnfOfiUIU@Y even a modest sized obkxt requires a large
numerical file for its description In Com-Geom, for example, a simple box having an
inner and outer dimension togefier with fuel is descri~ by approxknatdy 100 numbers.
Any change in orientatio~ shape, or mamru enmils changing a significant portion of that
file.

Because of the di.fllcuhy in genemting and tiidating files with great quantities of
numbers, the task of building Com-Geom descriptions was historically quite time consum-
ing. A full-scale tank complete with inuxior components could take as many as 18 months
to assemble and validate. Because of this critical path “ the process of vulnerability

ranalysis, the BRL developed a graphical editor called GED. This code runs on a minicom-
puter and gives immediate visual feedback to an operator who can initiate commands to
choose viewing planes, add or delete components and modify dimensions. me organiza-
ticm of GED is hierarchic in nature3 so that tie designer can traverse UP or down the
tree structure to initiate an opemtio~ To move higher in the tree structure is to increase
the number of geometric bodies and vice Ver=

GED has been used by the BRL for nearly two years and has significantly decreased
the time to generate and modify geometry. Savings factors from five to eight have been
experienced.

In addition to the editing process itself, the BRL has exploited advanced techniques in
image rendering made possible by current frame-btier technology. Such processes are
useful in the interpretation and validation of geometric files. Some examples of these
renderings are shown in Figures 4-8. The descriptions of the Ml and Soviet BMP were
each built in preGZD days. However, the FAV (Fast Attack Vehicle), shown in Fig. 8,
was built entirely with GED in about 12 hours. Various armament options (not shown)
have been added to its description-

6 M. J. Muus$ K. A. Appli~ J. R. Suckling C. A. Stanley, G. S. Moss and IZ P. Weaver,
‘GED: An Interactive Solid Modeling System for Vulnerability Assessment% “ BRL
Technical Repor~ ARBRL-TR-02480, March 1983 (UNCLASSIFIED) (~ ‘126657).
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6 M. 1. Muuss, K. A. Applin, 1. R. Suckling, C. A. Stanley, G. S. Moss and E. P. Weaver, 
"GED: An Interactive Solid Modeling System for Vulnerability Assessments, " BRL 
Technical Repor4 ARBRL-TR-02480, March 1983 (UNCLASSIFIED) (AD A126657). 
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Figure 4. Color-Shaded Image of the Exterior of the Ml Tank 
This model has been built using Com-Geom. 

Figure 5. Similar Image of the Ml Showing the Interior 
After the Exterior Structure has been Removed 

Certain interior components (such as the turbine engine) 
have also been removed. 
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Figure 6. Image of the Exterior of a Soviet BMP Generated from a 
Com-Geom Description 

Figure 7. Interior Detail of the BMP 
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Figure 8. Color Image of the New Army Fast Attack Vehicle (FA V) 

A final point of these renderings, particularly the vehicle interiors, is the complete 3-space 
description of geometry. In addition, all geometric structures are tagged with material 
attributes appropriate to subsequent analyses. 

IV. THE GEOMETRIC INTERFACE 

Although the solid modeling file describes the three-dimensional make up of a vehicle, 
the analysis code seldom sees this file itself. The geometry file is generally interrogated by 
an interface code which extracts certain data from the solids model and passes the infor
mation to the applications code. There are in general four geometric interface techniques. 
They are: 

1) Shotlining (Raytracing or Raycasting), 
2) 3-D Surface Mesh Generation, 
3) 3-D Volume Mesh Generation, and 
4) Analytic Representation. 

The first, shotlining or raycasting, is by far the most used technique in vulnerability ana
lyses. A series of rays are passed through the Com-Geom descriptions. The intersections 
to the primitives are calculated, the logic operations are performed, and the material 
assignments are made. 
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The code that BRL uses for this operation is called GIFT7,8 (Geometric Information For 
Targets) and it is used to calculate typically thousands of ray trajectories through a target 
description. 

Figure 9 and 10 illustrate the output of the GIFf code.· 

Figure 9. Color Image Showing a Set of Shotlines One Inch Apart in a 
Horizontal Plane Through the M48 Vehicle Below the Turret Ring. 

Various material structures are broken out by color. 

7 L. W. Bain, Jr., and M. J. Reisinger, "The GIFT Code User Manual; Volume I, 
Introduction and Input Requirements (U)," BRL Report No. 1802, July 1975. AD# 
A078364. 

8 G. G. Kuehl, L. W. Bain, Jr., M. J. Reisinger, "The GIFT Code User Manual; Volume 
II, The Output Options (U)," USA ARRAOCOM Report No. 02189, Sep 79, AD# 
A078364 . 

• These results are plotted by a code called RunShot written by L. M. Rybak which takes 
input from GIFT and plots color shotlines on a Megatek display system. 
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Figure 10. Same Rendering as Shown in Figure 9 for a Vertical Slice 
Through the M48 Center Line. 

Normally in vulnerability calculations, a 4 inch x 4 inch grid is superimposed over a target 
from a chosen aspect angle. A single ray is fired into each grid square over the entire 
view. In these illustrations, the shotline density was increased to a one inch grid. In Fig
ure 9, a horizontal set of rays has been intersected with the target description of an M48 
tank. The various materials have been coded by color. White is a default color and gen
erally includes the armor and suspension system. Green denotes crew air, yellow the 
ammunition, red the personnel, and burgundy the engine air. These color assignments are 
arbitrary and can be modified easily by the user. Figure 10 shows a similar set of rays for 
a vertical slice through the same vehicle. 

Although shotlining provides the great bulk of geometric information to vulnerability 
programs, new applications require geometry information in a completely different format. 
Currently the BRL is developing an interface from Com-Geom to a finite element mesh 
(FEM) preprocessor.· This particular code is capable of generating 3-dimensional meshes 
on the surfaces of solid objects (Le. a polygonal patch model) or optionally, a true 3-

• Private communication with G. S. Moss who is writing an interface between Com-Geom 
and a FEM preprocessor called PATRAN-G. PATRAN-G is a product of PDA 
Engineering, Santa Ana, CA. 
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dimensional Solid mesh of the solid oh-t itself. The former m~tility is usefd for those
application codes that - polygo~ ~tch approximations to compound surface
geometry. The size of the patch approximations is user definable, and can be set for the
precision required in the application. Such surface information is key to the exploitation of
various signature calculations of the following types:

● Radar Cross Sections
● Side-boking Radars
● Optical Scattering
● Susceptibility of Detectors to Radiation
● Camouflage EfTects
● Pattern Recognition
● Image Perspective Kkpende-

Three dimensional mesh generation is important for many static and dynamic structural
studies as well as the following in which complete interior and exterior material informa-
tion is needed

● Heat Flow leading to Surface (and Volumetric) Temperatures
● Acoustic Signatures
● Magnetic Signatures

FhxdIy there are certain applications in which the formal mathematical structure of a
solid mcxlel may relate in closed form to an attribute of vehicle assessment. For example,
the radar reflection from an armored vehicle is described by the spatial Fourier transform
of the electric field over the target itself. If a solid model is based on an implicit boundary
file having a mathematical form which can be directly evaIuated by such a transform, then
the resulting signature might be evaluated by direct analytical techniques

V. EXAMPLES OF SOLID MODEL APPLICATIONS

In this section we will describe a few examples of applications codes which depend on
solid geometric models for input. The first is an example of one of a number of point
burst models in use at the BRL.

A. Ballistic Analysis

The
T

icular model used here is called SLAVE (Simple Lethality and Vulnerability
Estimator) and is used to evaluate the effect of antiarmor weapons against ground

9 F. T. Bro~ D. C. Bely, and D. A. Ringersj ‘The Simple Lethality and Vulnerability
Estimator (SLAVE): User’s Manual,” BRL Technical Report ARBRL-TR412282 (AD#
B055277), January 1981.

D. A. Ringers and F. T. Brow ‘SLAVE (Simple Lethality and V~nembflity l%timator)
Analyst’s Guide,” Technical Report ARBRL-TR42333 (AD#B059679L), June 1981.
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9 F. T. Brown, D. C. Bely, and D. A. Ringers, "The Simple Lethality and Vulnerability 
Estimator (SLAVE): User's Manual," BRL Technical Report ARBRL-TR-02282 (AD# 
0055277), January 1981. 

D. A. Ringers and F. T. Brown, "SLAVE (Simple Lethality and Vulnerability Estimator) 
Analyst's Guide," Technical Report ARBRL-TR-02333 (AD#B059679L), June 1981. 
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vehicles. Following perforation of a vehicle armor shell by a penetrator, SLAVE uses a 
simplified subroutine to evaluate behind armor spall. Basically spall is described by a cone 
behind the point of armor penetration. If soft components are located anywhere within 
the spall cone, they are counted as killed by the behind-armor debris. Hard components 
survive unless they are impacted by the main penetrator. This code, formerly a batch 
model, has been port1'b to various minicomputers and runs in an interactive mode with 
optional color plotting. 

Figure 11 illustrates two color-coded diagrams generated with SLA VB; these results 
show the performance of a particular KE penetrator against the M48 tank. 
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Figure 11. Illustration of Mobility and/or Firepower Kills for a Test Threat 
Against an M48 Tank. Color key (see Figure 12) implies numerical range from 
zero (white) to one (orange). Left result shows the effect of main penetrator 
only. Right image shows combined result for both main penetrator and spall. 

The left figure illustrates the probability of an M and/or F kill (mobility and/or fire-power 
kill) in which only the effect of the main penetrator is assessed. The numbers are 
bounded by zero and one, and can be interpreted by means of the scale (below) in Figure 
12. White represents zero and orange represents one. 

10Ref . 1 and A. Ozolins and D. A. Ringers, "ISLA VE: Interactive Simple Lethality and 
Vulnerability Estimator," pp. 91-99. 
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Figure 12. A Color Plot Showing the Absolute Difference Between Figures 
lla and b. Numerical range of color key as described in previous caption. 

On the right the calculation has been repeated evaluating the effect of behind-armor 
spall as well as the main penetrator. Clearly more of the target is represented in orange, 
indicating higher kills. Figure 12 illustrates a feature of the interactive SLAVE model-
the option to subtract any two runs from each other. Here the spall and nospall calcula
tions have been differenced showing for this penetrator/vehicle configuration the contribu
tion of spall to the overall M/F kill. And for this particular threat/target combination, the 
contribution of behind armor spall to the overall system damage is clearly illustrated. 

B. Nuclear SurvivabilitY 

When a nuclear weapon is detonated, several threats to equipment and personnel exist. 
Among these threats are blast, thermal radiation, EMP and nuclear radiation. The last can 
be further divided into initial and residual radiation, the latter often being referred to as 
fallout. The BRL is primarily concerned with the initial nuclear radiation but evaluates 
other effects as well. 

The initial radiation output from a nuclear weapon is either a prompt neutron, a 
neutron-induced gamma (sometimes called a secondary gamma) or a prompt gamma. In 
our analyses we usually only consider the total dose effects. The calculational technique 
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used at the BRL is Vehicle Code System (VeS),11,12 actually a combination of three 
codes. Referring to Figure 13, the first code calculates detenninistically the transport of 
radiation from the source to an envelope that surrounds the vehicle. The second code 
makes a stochastic calculation to detennine the relationship between the radiation at the 
source envelope and a detection point inside the vehicle. This calculation is done in what 
is known as the adjoint mode which amounts to a calculation backward in time for scatter
ing from the detector point to the source envelope. 

x x x x x x x x x 

Figure 13. Ray Diagram Showing the Calculational Geometry for the Vehicle 
Code System (Ves). The Discrete Ordinate eode (DOT) calculates the transport 
of nuclear radiation from the source to an envelope surrounding a vehicle. A 
second calculation relates the radiation at the envelope to the total dose at some 
interior portion of the vehicle. The vehicle geometry itself is described using 
Com-Geom. 

liW. A. Rhodes, "Development of a Code System for Detennining Radiation Protection 
of Annored Vehicles (the VCS Code)," ORNL-TM-4664, Oak Ridge National 
Laboratory, Oak Ridge, TN, October 1974. 

12W. A. Rhodes et aI., "Vehicle Code System (VCS) User's Manual," ORNL-TM-4648, 
Oak Ridge National Laboratory, Oak Ridge, TN, August 1974. 
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A Monte Carlo procedure is invoked as a given particle is traced through the Com-Geom 
target description. The adjoint mode is adopted for computational efficiency. A third code 
matches the first two codes at the source envelope boundary. 

Recently such a calculation was performed for a particular US tank concept called the 
Tank Test Bed (TTB).* The results are illustrated in Figure 14. 

Figure 14. False-Color Image Showing Results of Neutron Transport Calculation 
for a Concept Vehicle Called Tank Test Bed (TIB). Total dose reaching driver 
was calculated by summing radiation leakage through all exterior vehicle regions. 
Results have been normalized to the driver's hatch (which contributed the 
greatest portion of radiation). Note the low-detail Com-Geom description used 
for this study. Color key at bottom represents range of normalized radiation dose 
from zero (dark blue) to unity (white). 

There are two principal points. The first is that the description of the TTB illustrated here 
is austere --- there is a minimum of detail that can be observed in the exterior detail of the 
vehicle. The same holds true for the interior of the vehicle. This is because neutron 

* J. W. Kinch and A. E. Rainis, "Nuclear Vulnerability Analysis of the Tank Test Bed 
(TTB) in an Initial Nuclear Radiation Environment," BRL Technical Report ARBRL-TR-
02552, March 1984 (AD B080980) . 
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transport problems are sensitive on.lY to mther gross dhribution of material and thus
geometric detail is insigticant in such analyses. Second, the vehicle is displayed using a
false coloring scheme. In this study the toti radiation dose reaching the driver’s head was
calculated while monitoring the specfic emrior portions of the vehicle through which the
radiation leaked. In Figure 14, an attempt has been made to render the portions of the
vehicle contributing most greatly in brighter colors, those contributing less in the duller
part of the spectrum. The results have also been normalized to the radiation entering
through the driver’s hatch; 60% of the total drive~s dose was delivered through the hatch,
and for the illustration that amount of radiation has been normalized to unity. Radiation
entering through other exterior vehicle parts is scaled to the hatch flux according to the
code shown in the figure.

C. Weights and Moments

As is well appreda@ moments and Productsof inertia play a central role in the design
of military vehicles. Particularly for aircrafq the center-of-gravity and inertia-related

-e~rs me key KI favomble Performs= and s~bility. Even for ground vehicles these
parameters are important. Total weights for ground vehicles are always needed for assess-
ment of air transportability. Applications of moments of inertia range from calculating the
probability that ground vehicles will turn over due to a nuclear air blast to predicting aim-
ing errors of stabilized fire-control systems mounted on vehicles traversing rough terrain

The estimate of moments and products of i
T!f

k is a straightforwar~ but somewhat
laborious calculation for a solid modeling system. That the calculation is straightfonvard
can be seen by again examining Figure 9. The shotlines illustrated wem calculated on
one-inch centers. The various obbts (indicated by color) each have an assigned density.
In effech each shot-line is broadened by one half inch above and below, and left and right.
This gives a (one-inch) square cross section of uniform mass between material interfaces
as the shotline progresses through the vehicle description. The laborious aspect of the cal-
culation involves setting the effective density of various components properly and sing

that the predominant vehicle constituents are in place.

13See for example G. A. Bias% “Theoretical Physi~” AppletonUmtury<rof@ NY
(1%2), PP. 102 m. BY these techniques dculations of the principal second moments
and cross products of inertia can also be made. Often these mechanical design
parameters have been umvailable to the traditional engineer due to the computational
overhd.
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transport problems are sensitive only to rather gross distribution of material and thus 
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through the driver's hatch; 60% of the total driver's dose was delivered through the hatch, 
and for the illustration that amount of radiation has been nonnalized to unity. Radiation 
entering through other exterior vehicle partS is scaled to the hatch flux aa:ording to the 
code shown in the figure. 

C. Weights and Moments 

As is well apprecia~ moments and products of inenia playa central role in the design 
of military vehicles. Particularly for aircraft, the center-of-gravity and inertia-related 
parameters are key to favorable perfonnance and stability. Even for ground vehicles these 
parameters are important. Total weights for ground vehicles are always needed for assess
ment of air transportability. Applications of moments of inertia range from calculating the 
probability that ground vehicles will turn over due to a nuclear air blast to predicting aim
ing errors of stabilized fire-control systems mounted on vehicles traversing rough terrain. 

The estimate of moments and products of iIlfjljia is a straightforward, but somewhat 
1aboriou~ calculation for a solid modeling system. That the calculation is straigh tforward 
can be seen by again examining Figure 9. The shotlines illustrated were calculated on 
one-inch centers. The various objects (indicated by color) each have an assigned density. 
In effect, each shotline is broadened by one half inch above and below, and left and right. 
This gives a {one-inch} square cross section of unifonn mass between material interfaces 
as the shotline progresses through the vehicle description. The laborious aspect of the cal
culation involves setting the effective density of various components properly and seeing 
that the predominant vehicle constituents are in place. 

13See for example G. A. Blas~ "Theoretical Physics," Appleton-Century-Crof~ NY 
(1962), pp. 102 ff. By these techniques calculations of the principal second moments 
and cross products of inertia can also be made. Often these mechanical design 
parameters have been unavailable to the traditional engineer due to the computational 
overhead. 
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Momentaf-inertia and center of mass dc~ations were performed recently” using the
Com-Geom description of the M60A3. The changes of the N version over the Al include
a new suspension system, a new turret and fire control system, and new tracks. A orie-
inch shotline grid was used and the calculation was performed along each of the principal
axes (See Figure 15). The total number of shotlines computed came to
the results of the three runs were averaged.

z

about 76,5(MJ and

Y

Figure 15. Schematic Showing Orientation of Axes for Moment aml
Center-of-Mass Calculations for M60A3.

(Origin of coordinates resides at the center of the turm ring.)

Table 2 shows the calculation of center of gravity comparing the Project Manager’s data
and the BRL calculations. The origin of the coordinate system resides at the center and
base of the turret ring. Given the length of this vehicle (approximately 20 feet), the PM’s
and calculated results are within a few percent agreement. The results for moments of
inertia are given in Table 3. Again the agreement is quite good.

● Private communication with J. H. Waker.
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Moment~f-inenia arxi center of mass calculations were performed recentl~ using the 
Com-Geom description of the M60A3. The changes of the A3 version over the Al include 
a new suspension system, a new turret and fire control system, and new tracks. A Orie
inch shotline grid was used and the calculation was performed along each of the principal 
axes (See Figure IS). The total number of shotlines computed came to about 76,500, and 
the results of the three runs were averaged. 
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Figure IS. Schematic Showing Orientation of Axes for Moment and 
Center-of-Mass Calculations for M60A3. 

(Origin of coordinates resides at the center of the turret ring.) 

Table 2 shows the calculation of center of gravity comparing the Project Manager's data 
and the BRL calculations. The origin of the coordinate system resides at the center and 
base of the turret ring. Given the length of this vehicle (approximately 20 feet), the PM's 
and calculated results are within a few percent agreement. The results for moments of 
inertia are given in Table 3. Again the agreement is quite good . 

• Private communication with J. H. Walter. 
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TABLE 2. A COMPARISON OF THE CENTER OF GRAVITY
FOR THE M60A3 W BATTLE TANK.

The upper figures are due to the Project Manager, M60, aml
the lower numbers are the result of a GI~ Calculation
Coordinate axes are shown in Figure 15. Origin resides at
the center of the turret ring.

XYZ
PM M60 FIGURES: -15.4 -0.6 -14.4 INCHES

GIFT CAWLJLATION -20.3 4).4 -15.6 INCHES

TABLE 3. MOMENT OF II~~IA ( in lbm-ft2) ABOUT THE CENTER
OF GRAVITY FOR THE M60A3 TANK. Left are the PM M60 dauq

right are the results of the GIFT Calculation.

PM M60 DATA G~ CALCULATION

1= 1.67 X 166 1.55 x 106

Iv 4.95 x 106 5.12 X 106

1= 5.46 x 106 5.59 x 106

One further application of these calculations worthy of mention is their use in fire-
control predictions. Clearly the slew rate for a tank turret depends on the distribution of
mass. Using our graphics editor, it is a straightforward process to add or delete ammunit-
ion in a turret bustle or to reconfigure the armor and rerun GIFT for each configuration
to generate various sets of moments. Each set can be fed in turn into a servo-control
model to see how the fire control mechanism is affected by configuration.

D. Susceptibility of Vision Elements

The BRL was recently asked to evaluate susceptibility of mious vision ports on
armored vehicles to optical irradiation. One vehicle for which this study was made is the
Soviet BMP, illustrated again in Figure 16. This rendering is different from that shown in
Figure 6 for here the commander and driver vision blocks are illustrated in blue. The
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The upper figures are due to the Project Manager, M60, and 
the lovw:r numbers are the result of a GIFT calculation. 
Coordinate axes are shown in Figure 15. Origin resides at 
the center of the turret ring. 
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-14.4 INCHES 

GIFT CALCULATION: -20.3 -0.4 -15.6 INCHES 

TABLE 3. MOMENT OF INERTIA (in 1 bm-ft2) ABOUT THE CENTER 
OF GRAVITY FOR THE M60AJ TANK. Left are the PM MOO data; 

right are the results of the GIFT Calculation. 

PMM60DATA GIFT CALCULATION 

Ixx 1.67 x 166 1.55 x 106 

Iyy 4.95 x 106 5.12 x 106 

Izz 5.46 x 106 5.59 x 106 

One further application of these calculations worthy of mention is their use in fire
control predictions. Clearly the slew rate for a tank turret depends on the distribution of 
mass. Using our graphics editor, it is a straightforward process to add or delete ammuni
tion in a turret bustle or to reconfigure the armor and rerun GIFT for each configuration 
to generate various sets of moments. Each set can be fed in turn into a servo-control 
model to see how the fire control mechanism is affected by configuration. 

D. Susceptibility' of Vision Elements 

The BRL was recently asked to evaluate susceptibility of various vision pons on 
armored vehicles to optical irradiation. One vehicle for which this study was made is the 
Soviet BMP, illustrated again in Figure 16. This rendering is different from that shown in 
Figure 6 for here the commander and driver vision blocks are illustrated in blue. The 
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GIFT code was modified- to calculate the area of a particular vision block exposed to opti
cal radiation from a given aspect angle. 

Figure 16. Color Shaded Image of Soviet BMP. 
The blue colors highlight the commander and driver vision blocks. 

For this study the elevation angle was held at zero and the azimuthal angle was varied 
over the frontal arc. Figure 17 shows the results for the commander's forward periscope. 
The cardioid plot gives the percent area of his vision block that would be illuminated by a 
laser versus azimuth angle. The large reduction in illumination on the commander's right 
is due to the obstruction caused by the mounted sagger missile. 

-Private communication with G. G. Kuehl. 
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Figure 17. A Polar Plot Illustrating the Fraction of the Commander’s
Fo~d Site Illuminated by an optical Source as a Function of

Azimuth Angle (Zero Degrees Elevation).

An important related problem with which vehicle builders must deal is the design and
placement of the vision elements so as to optimize the exterior field-of-view for the vehi-
cle occupants. When the viewing system for a current fighting vehicle was initially built
(presumably without the assistance of a computer-aided vision program), the result WS a
substantial blind spot in one portion of the commander’s field-of-view. At some expense
the system was redesigned to eliminate this problem.

With the appropriate application code, a solid model can be used with inside-out ray-
casting to give the view from inside a vehicle through any vision port or window. Such an
option is available in a solid modeling package called Euclid* and could be indispensable in
the design of vision systems.

E. Infrared Modeli~

Solid Modeling can also be applied to the problem of infrared signature analysis. In the
design of smart munitions it is important to know the nature of vehicle signatures owm a
range of detection bands and signal processing schemes. In order to estimate the infrared

● Euclid is a product of MATRA Corporation of France and is distributed by MATRA
DATAVISION, Inc., BostorL MA.
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Figure 17. A Polar Plot Illustrating the Fraction of the Commander's 
Forward Site Illuminated by an Optical Source as a Function of 

Azimuth Angle (Zero Degrees Elevation). 

An important related problem with which vehicle builders must deal is the design and 
placement of the vision elements so as to optimize the exterior field-of-view for the vehi
cle occupants. When the viewing system for a current fighting vehicle was initially built 
(presumably without the assistance of a computer-aided vision program), the result was a 
substantial blind spot in one portion of the commander's field-of-view. At some expense 
the system was redesigned to eliminate this problem. 

With the appropriate application code, a solid model can be used with inside-out ray
casting to give the view from inside a vehicle through any vision port or window. Such an 

option is available in a solid modeling package called Euclid- and could be indispensable in 
the design of vision systems. 

E. Infrared Modeling 

Solid Modeling can also be applied to the problem of infrared signature analysis. In the 
design of smart munitions it is important to know the nature of vehicle signatures over a 
range of detection bands and signal processing schemes. In order to estimate the infrared 

-Euclid is a product of MA TRA Corporation of France and is distributed by MATRA 
DATA VISION, Inc., Boston, MA. 

28 



perfonnance of one smart system called SADARM, 14 a series of measurements in the 8-
12 micron bandwere made for a Soviet T62 tank under various operating conditions. For 
each set of conditions, a complete thermal signature was gathered over the vehicle surface. 
The measured temperatures were then associated with the corresponding exterior regions 
of the Com-Geom description. Such an approach, although not predictive, assures that 
the effect of sensor aspect angle is accurately accounted for in the subsequent simulation. 

Figure 18 shows a (Com-Geom generated) color-shaded image of a T62 Soviet tank. 
And Figure 19 shows a thennogram of the tank from the same aspect angle (90,45). The 
false color image illustrates the signal strength in the 8-12 micron band; this data was 
taken during clear night time operating conditions, and the color scale represents a range 
of about 18 to 35 Degrees C. Although this is not an example of predictive modeling, the 
solid mcxlel serves an invaluable role in achieving true image perspective in the sensor 
simulation. 

Figure 18. A Color Shaded Image of a T62 Tank When Viewed From a 
(90,45) Degree Aspect Angle. 

1~. R. Rapp, "A Computer Model for Estimating Infrared Sensor Response to Target and 
Background Thennal Emission Signatures," BRL Memorandum Report ARBRL-MR-
03292, August 1983 (AD B076976L). 
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Figure 19. An Infrared Image of a T62 Which has Been Generated by Mapping 
Measured Radiances onto a Solid ModeL The use of the solid model in this way 
assures the proper effect of aspect angle in later analyses. 

Actual predictive IR modeling is possible based on solid modeling but it is considerably 
more difficult. To make predictions it is necessary to calculate a complete heat budget 
throughout the vehicle accounting for all sources and sinks of heat among all components 
including the ratfs of heat flow as well. The methodology to do this was developed but 
never validated. Generally thermal models are developed around an FEM structure. 
Heal flow is calculated from node to node with mesh links characterized by coupling 
coefficients. 

VI. SUMMARY 

In this paper we have described -some of the principal techniques used in solid modeling 
as well as illustrated ways in which this discipline can be applied. We have asserted that 
e5Sentially all engineering models which attempt to predict system performance must be 

15 J. R. Rapp, "A Computer Model for Predicting Infrared Emission Signatures of An 
M60A1 Tank," BRL Report No. 1916, AD#B0l341IL, August 1976. 
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SUppOrted by solid geometric descriptions. Although solid modeling MS &veloped princi-
pally for ballistic and nucka.r studie$ iw applimtion is fm wider than commonly realized.

The applications described abo~ belong wholely to the R & D cycle of weapons SYS
terns. The title of this paper implied a much kger rde for solid modeling, and indeed it
has one. Materiel development gene~lys- with a Wgue concept. In a seriesof itera-
tive analyses, the concept is progressively refined. At some point the concept is either
passed on for prototyping or abandoned. we beliew that Solid Modeling should play a
key role in providing the critical geometricimateriel AW base to suPPort a broad group of
engineering a~yses. Subseqwnt tO this pha=, the ~m - should be passed over to the
manufacturing cycle where subsmntti wings in time and improvements in accuracy could
be made. For in fut much of the Computer-aidd manufutwing tim would already have
been generated.

Figure 20 attempts to illustrate the process of materiel ~uisition from concept (in the
R & D phase) through manufactming. At the h- of the process is the Solid Geometric
Model (sGM) data base. In the upper half, layered around the data base are the applica-
tions codes for suitability uses~en~, the supporting electronic environment makes it
possible to move and share data quickly. In the lower half the refined concepts become
reality through computer-aided manufacturing techniques. Somewhat ironically, the hny
has paid considembly more attention to the automaton of this latter stage of materiel
&velopment than to the concept and engineering phases. Based on the enormous mone-
tary commitments made to the manufacturing cycle, this attention is not surprising. How-
ever, the potentti to achie~ maximu =mndesign optimimtion can only occur in the
engineering ph=s of devdopmen~ not by ~tering COnStrUCt materiel by means of pro-
duct improvements (PIPs) after manufacturing. Only by means of mmputer-aided
geametric techniques carefully and broadly applied to weapons engineering can we expect
to achieve the optimum performance, reliability and timely &livery of future military sys-
tems.
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supported by solid geometric descriptions. Although solid modeling was developed pnncl
patly for ballistic and nuclear studies, its application is far wider than commonly realized. 

The applications described above belong wholely to the R &: D cycle of weapons sys
tems. The title of this paper implied a much larger role for solid modeling, and indeed it 
has one. Materiel development generally starts with a vague concept. In a series of itera
tive analyses, the concept is progressively refined. At some point the concept is either 
passed on for prototyping or abandoned. We believe that Solid Modeling should play a 
key role in providing the critical geometric/materiel data base to suppon a broad group of 
engineering analyses. Subsequent to this phase, the data base should be passed over to the 
manufacturing cycle where substantial savings in time and improvements in accuracy could 
be made. For in fact much of the computer-aided manufacturing data would already have 
been generated. 

Figure 20 attempts to illustrate the process of materiel aa:tuisition from concept (in the 
R &: D phase) through manufacturing. At the heart of the process is the Solid Geometric 
Model (SGM) data base. In the upper half, layered around the data base are the applica
tions codes for suitability assessments; the supponing electronic environment makes it 
possible to move and share data quickly. In the lower half the refined concepts become 
reality through computer-aided manufacturing techniques. Somewhat ironically, the Anny 
has paid considerably more attention to the automaton of this latter stage of materiel 
development than to the concept and engineering phases. Based on the enormous mone
tary commitments made to the manufacturing cycle, this attention is not surprising. How
ever, the potential to achieve maximum weapon-design optimization can only occur in the 
engineering phases of development, not by altering constructed materiel by means of pro
duct improvements (PIPs) after manufacturing. Only by means of computer-aided 
geometric techniques carefully and broadly applied to weapons engineering can we expect 
to achieve the optimum performance, reliability and timely delivery of future military sys
tems. 
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Figure 20. A Diagram of the R&D (up&r half) and Manufacturing (lower half)
Phases of Materiel Development. At the heart of both mtir cycles is the Solid
Geometric Model (SGM) data base which unites geometry with material
(attribute) properties. Around the shared data base are the supporting codes and
processes all linked via electronic media.
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Figure 20. A Diagram of the R&D (upper half) and Manufacturing (tower half) 
Phases of Materiel Development. At the heart of both major cycles is the Solid 
Geometric Model (SGM) data base which unites geometry with material 
(attribute) properties. Around the shared data base are the supporting codes and 
processes all linked via electronic media. 
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The original Com-Geom method WM produced under contract for the BRL by
Mathematical Applications Group, Inc., Elmsfoti m and was an early precursor for
a current product marketed under the name Synt.havkion. For example,

“A Geometric Description Techtique Suimble for Computer Analysis of Both
Nuclear and conventional Vulnerability of Armored Military Vehicles,” MAGI-6701,
AD847576, August 1969.

‘The MAGIC-SAMC Target Analysis Technique,” Vol VI, AMSAA TR14, April
1969. User Manual 1971.

MAGIC Computer Sirnulatiou VO1.1, User Manual,61JTCG/ME-71-7-1, July 1971.

MAGIC Computer Simulatio~ Vol. 2, Analysts Manual Parts 1 and 2,
61JTCG/ME71-7-2-2, Mlly 1971

For an excellent review paper covering solid modeling approaches see A. A. G.
Requicha and H. B. Voelcker, “Solid Modeling An Historical Summary & Contem-
porary Assessment” LEEE/CS Computer Graphics& Application March 1982.

For a discussion of ComGeom and a whnique for interactive editiw see P. H.
Deiw “Solid Modeling at the US Army Ballistic Research Laboratory,” Proceedings
of the Third Annual Gnference and Exposition of the National Computer Graphics
Association Inc., held 13-16 June, 1982, Vol. II, pp. 949-960.

E. Coheu R. Lyche, R. Riesenfel& “Discrete B-Splines and Subdivision Techniques
in Computer-Aided Geometric Design and Camputer Graph ics,” Computer Graphics
and Image Processing, Vol. 14, No. 2, Oct. 1980.

E. cohe~ “Some Mathematical Tools for a Modeller’s Workbench,” Proceedings of
Symposium on Computer-Aided Geometry Modeling held Apr. 20-22, 1983 at
NASA Langley, Hampto~ VA.

M. J. Muuss, K. A. Appli~ J. R. Suckling, C. A. Stanley, G. S. Moss and E. P.
Weaver, “GED: An Interactive Solid Modeling System for Vulnerability Assess-
men~” BRL Technical Repor~ ARBRL-TR-02480, March 1983 (UNCLASSIFIED).
(ADA126657) .
L. W. BaiL Jr., and M. J. Reisinger, “The GIFI’ Code User Manua~ Volume I,
Introduction and Input Requirements (U),” BRL Report No. 1802, July 1975. AD#
A078364.

G. G. Kuehl, L. W. BaiL Jr., M. J. Reisinger, “The GIIW Code User Manual;
Volume II, The Output Options (U),” USA ARRADCOM Report No. 02189, Sep.
79, AD# A078364.
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