
The Hacker's Guide to BRL-CAD

=============================

Please read this document if you are contributing to BRL-CAD.

BRL-CAD is a relatively large package with a long history and

heritage. Many people have contributed over the years, and there

continues to be room for involvement and improvement in just about

every aspect of the package. As such, contributions to BRL-CAD are

very welcome and appreciated.

For the sake of code consistency, project coherency, and the long-term

evolution of BRL-CAD, there are guidelines for getting involved.

Contributors are strongly encouraged to follow these guidelines and to

likewise ensure that other contributors similarly follow the

guidelines. There are simply too many religious wars over what

usually come down to personal preferences and familiarity that are

distractions from making productive progress.

These guidelines apply to all developers, documentation writers,

testers, porters, graphic designers, web designers, and anyone else

that is directly contributing to BRL-CAD. As all contributors are

also directly assisting in the development of BRL-CAD as a package,

this guide often simply refers to contributors as developers.

Although BRL-CAD was originally developed and supported primarily by

the U.S. Army Research Laboratory and its affiliates, it is now a true

Open Source project with contributions coming in to the project from

around the world. The U.S. Army Research Laboratory continues to

support and contribute to BRL-CAD, but now the project is primarily

driven by a team of core developers and the BRL-CAD open source

community. Contact the BRL-CAD developers for more information.

TABLE OF CONTENTS

 Introduction

 Table of Contents

 Getting Started

 How to Contribute

 Source Code Languages

 Filesystem Organization

 Coding Style & Standards

 Documentation

 Testing & Debugging

 Patch Submission Guidelines

 Bugs & Unexpected Behavior

 Commit Access

 Contributor Responsibilities

 Version Numbers & Compatibility

 Naming a Source Release

 Naming a Binary Release

 Making a Release

 Patching a Release

 Getting Help

GETTING STARTED

As there are many ways to get started with BRL-CAD, one of the most

important steps for new contributors to do is get involved in the

discussions and communicate with the BRL-CAD developers. There are

mailing lists, on-line forums, and an IRC channel dedicated to BRL-CAD

development and project communication. All contributors are

encouraged to participate in any of the available communication

channels:

* Internet Relay Chat

 The primary and generally preferred mechanism for interactive

 developer discussions is via Internet Relay Chat (IRC). Several of

 the core developers and core contributors of BRL-CAD hang out in

 #brlcad on the Freenode network. With most any IRC client, you

 should be able to join #brlcad on irc.freenode.net, port 6667. See

 http://freenode.net and http://irchelp.org for more information

* E-mail Mailing Lists

 There are several mailing lists available for interaction, e.g. the

 http://sourceforge.net/mail/?group_id=105292 "brlcad-devel" mailing

 list. More involved contributors may also be interested in joining

 the "brlcad-commits" and "brlcad-tracker" mailing lists.

* On-line Forums

 Discussion forums are available on the project site at

 http://sourceforge.net/forum/?group_id=105292 for both developers

 and users. Of particular interest to developers is, of course, the

 "Developers" forum where all contributors are encouraged to

 participate.

HOW TO CONTRIBUTE

BRL-CAD's open source management structure is best described as a

meritocracy. Roughly stated, this basically means that the power to

make decisions lies directly with the individuals that have ability or

merit with respect to BRL-CAD. An individual's ability and merit is

basically a function of their past and present contributions to the

project. Those who constructively contribute, frequently interact,

and remain highly involved have more say than those who do not.

As BRL-CAD is comprised of a rather large code base with extensive

existing documentation and web resources, there are many many places

where one may begin to get involved with the project. More than

likely, there is some new goal you already have in mind, be it a new

geometry converter, support for a different image type, a fix to some

bug, an update to existing documentation, a new web page, or something

else entirely. Regardless of the goal or contribution, it is highly

encouraged that you interact with the existing developers and discuss

your intentions. This is particularly important if you would like to

see your modification added to BRL-CAD and you do not yet have

contributor access. When in doubt, working on resolving existing

bugs, improving performance, documentation, and writing tests are

perfect places to begin.

For many, it can be overwhelming at just how much there is. To a

certain extent, you will need to familiarize yourself with the basic

existing infrastructure before significantly changing or adding a

completely new feature. There is documentation available in the

source distribution's doc/ directory, throughout the source hierarchy

in manpages, on the website, and potentially in the documentation

tracker at http://sourceforge.net/docman/?group_id=105292 covering a

wide variety of topics. Consult the existing documentation, sources,

and developers to become more familiar with what already exists.

See the PATCH SUBMISSION GUIDELINES section below for details on

preparing and providing contributions.

REFACTORING

proportion -> integrity -> clarity

Refactoring is one of the most useful activities a contributor can

make to BRL-CAD. Code refactoring involves reviewing and rewriting

source code to be more maintainable through reduced complexity and

improved readability, structure, and extensibility.

For each source file in BRL-CAD, the following checklist applies:

* Consistent indentation. See CODING STYLE & STANDARDS below.

 Indents every 4 characters, tab stops at 8 characters with BSD KNF

 indentation style. The sh/indent.sh script will format a file

 automatically, but requires a manual review afterwards.

* Consistent whitespace. See CODING STYLE & STANDARDS below, section

 on stylistic whitespace.

* Headers. Only including headers that declare functions used by that

 file. If system headers are required, then common.h should be the

 first header included.

* Comments. All public functions are documented with doxygen

 comments. Move public comments to the public header that declares

 the function. Format block comments to column 70 with only one

 space (not tabs) after the asterisk. Comments should explain why

 more than what.

* Magic numbers. Eliminate constant numbers embedded in the code

 wherever feasible, instead preferring dynamic/unbounded allocation.

* Public symbols. Public API symbols should be prefixed with the

 library that they belong to and declared in a public header. Public

 symbols should consistently (only) use underscores, not CamelCase.

* Private symbols. Private functions should be declared HIDDEN.

* Dead code. Code that is commented out should be removed unless it

 serves a specific documentation purpose.

* Duplicate code. Combine common functionality into a private

 function or new public API routine. Once and only once.

* Verbose compilation warnings. Quell them all.

* Globals. Eliminate globals by pulling them into an appropriate

 scope and passing as parameters or embedding them in structures as

 data.

In addition, don't be afraid to rewrite code or throw away code that

"smells bad". No code is sacred. Perfection is achieved not when

there is nothing more to add but, rather, when there is nothing more

to take away.

SYSTEM ARCHITECTURE

At a glance, BRL-CAD consists of about a dozen libraries and over 400

executable binaries. The package has been designed from the ground up

adopting a UNIX methodology, providing many tools that may often be

used in harmony in order to complete a task at hand. These tools

include geometry and image converters, image and signal processing

tools, various raytrace applications, geometry manipulators, and more.

One of the firm design intents of the architecture is to be as

cross-platform and portable as is realistically and reasonably

possible. As such, BRL-CAD maintains support for many legacy systems

and devices provided that maintaining such support is not a

significant burden on developer resources. Whether it is a burden or

not is of course a potentially subjective matter. As a general

guideline, there needs to be a strong compelling motivation to

actually remove any functionality. Code posterity, readability, and

complexity are generally not sufficient reasons. This applies to

sections of code that are no longer being used, might not compile, or

might even have major issues (bugs). This applies to bundled 3rd

party libraries, compilation environments, compiler support, and

language constructs.

In correlation with a long-standing heritage of support is a design

intent to maintain verifiable repeatable results throughout the

package, in particular in the raytrace library. BRL-CAD includes

scripts that will compare a given compilation against the performance

of one of the very first systems to support BRL-CAD: a VAX 11/780

running BSD. As the BRL-CAD Benchmark is a metric of the raytrace

application itself, the performance results are a very useful metric

for weighing the relative computational strength of a given platform.

The mathematically intensive computations exercise the processing

unit, system memory, various levels of data and instruction cache, the

operating system, and compiler optimization capabilities.

To support what has evolved to be a relatively large software package,

there are a variety of support libraries and interfaces that have

aided to encapsulate and simplify application programming. At the

heart of BRL-CAD is a Constructive Solid Geometry (CSG) raytrace

library. BRL-CAD has its own database format for storing geometry to

disk which includes both binary and text file format representations.

The raytrace library utilizes a suite of other libraries that provide

other basic application functionality.

LIBRARIES

librt: The BRL-CAD Ray-Trace library is a performance and

accuracy-oriented ray intersection, geometric analysis, and geometry

representation library that supports a wide variety of geometric

forms. Geometry can be grouped into combinations and regions using

CSG boolean operations.

 Depends on: libbn libbu libregex libm (openNURBS)

libbu: The BRL-CAD Utility library contains a wide variety of routines

for memory allocation, threading, string handling, argument support,

linked lists, and more.

 Depends on: (threading) (malloc)

libbg: The BRL-CAD Geometry library implements generic algorithms

widely used in computational geometry, such as convex hull and

triangle/triangle intersection calculations.

 Depends on: libbn libbu

libbn: The BRL-CAD Numerics library provides many floating-point math

manipulation routines for vector and matrix math, a polynomial

equation solver, noise functions, random number generators, complex

number support, and more as well.

 Depends on: libbu libm

libbrep: The BRL-CAD Boundary Representation library implements

routines needed for the manipulation and analysis of Non-Uniform

Rational BSpline based boundary representations.

 Depends on: libbg libbn libbu OpenNURBS

libcursor: The cursor library is a lightweight cursor manipulation

library similar to curses but with less overhead.

 Depends on: termlib

libdm: The display manager library contains the logic for generalizing

a drawable context. This includes the ability to output

drawing/plotting instructions to a variety of devices such as X11,

Postscript, OpenGL, plot files, text files, and more. There is

generally structured order to data going to a display manager (like

the wireframe in the geometry editor).

 Depends on: librt libbn libbu libtcl libpng (X11)

libfb: The framebuffer library is an interface for managing a graphics

context that consists of pixel data. This library supports multiple

devices directly, providing a generic device-independent method of

using a frame buffer or files containing frame buffer images.

 Depends on: libbu libpkg libtcl (X11) (OpenGL)

libfft: The Fast-Fourier Transform library is a signal processing

library for performing FFTs or inverse FFTs efficiently.

 Depends on: libm

liboptical: The optical library is the basis for BRL-CAD's shaders.

This includes shaders such as the Phong and Cook-Torrence lighting

models, as well as various visual effects such as texturing, marble,

wood graining, air, gravel, grass, clouds, fire, and more.

 Depends on: librt libbn libbu libtcl

libpkg: The "Package" library is a network communications library that

supports multiplexing and demultiplexing synchronous and asynchronous

messages across stream connections. The library supports a

client-server communication model.

 Depends on: libbu

libtclcad: The Tcl-CAD library is a thin interface that assists in the

binding of an image to a Tk graphics context.

 Depends on: libbn libbu libfb libtcl libtk

libtermio: The terminal I/O library is a TTY control library for

managing a terminal interface.

 Depends on nothing

libwdb: The "write database" library provides a simple interface for

the generation of BRL-CAD geometry files supporting a majority of the

various primitives available as well as combination/region support.

The library is a write-only interface (librt is necessary to read &

write) and is useful for procedural geometry.

 Depends on: librt libbn libbu

libbrlcad: This "conglomerate" library provides the core geometry

engine facilities in BRL-CAD by combining the numerics, ray-tracing,

and geometry database processing libraries into one library.

 Depends on: libwdb librt libbn libbu

 Includes dependent libraries as part of this library

FILESYSTEM ORGANIZATION

BRL-CAD has a STABLE branch in SVN that should always compile and run

with expected behavior on all supported platforms. Contrary to

STABLE, the SVN trunk is generally expected to compile but more

flexibility is allowed for resolution of cross-platform build issues

and on-going development.

Included below is a sample (not comprehensive) of how some of the

sources are organized in the source distribution. For the directories

under src/ and doc/docbook, see the provided README file for more

details on subdirectories and authorship not covered here.

 bench/

 The BRL-CAD Benchmark Suite

 db/

 Example geometry databases

 doc/

 Documentation

 doc/docbook

 Documentation in DocBook xml format, see doc/docbook/README

 for more details

 include/

 Public headers

 misc/

 Anything not categorized or is sufficiently en masse

 pix/

 Sample raytrace images, includes benchmark reference images

 regress/

 Scripts and resources for regression testing

 sh/

 Utility scripts, used primarily by the build system

 src/

 Sources, see src/README for more details

 src/adrt

 Advanced Distributed Ray Tracer

 src/conv/

 Various geometry converters

 src/conv/iges/

 IGES converter

 src/fb/

 Tools for displaying data to or reading from framebuffers

 src/fbserv/

 Framebuffer server

 src/java/

 Java geometry server interface to librt

 src/libbn/

 BRL-CAD numerics library

 src/libbu

 BRL-CAD utility library

 src/libfb/

 BRL-CAD Framebuffer library

 src/libfft/

 Fast Fourier transform library

 src/libged/

 Geometry editing library

 src/libpkg/

 Network "package" library

 src/librt/

 BRL-CAD Ray-trace library

 src/libwdb/

 Write database library

 src/mged/

 Multi-device geometry editor

 src/other/

 External frameworks (Tcl/Tk, libpng, zlib, etc.)

 src/proc-db/

 Procedural geometry tools, create models programmatically

 src/remrt/

 Distributed raytrace support

 src/rt/

 Raytracers, various

 src/util/

 Various image processing utilities

SOURCE CODE LANGUAGES

The vast majority of BRL-CAD is written in ANSI C with the intent to

be strictly conformant to the C standard. A majority of the MGED

geometry editor is written in a combination of C, Tcl/Tk, and Incr

Tcl/Tk. The BRL-CAD Benchmark, build system, and utility scripts are

written in what should be POSIX-compliant Bourne Shell Script. An

initial implementation of a BRL-CAD Geometry Server is written in PHP.

With release 7.0, BRL-CAD has moved forward and worked toward making

all of BRL-CAD C code conform strictly with the ANSI/ISO standard for

C language compilation (ISO/IEC 9899:1990, i.e. c89). Support for

older compilers and older K&R-based system facilities is being

migrated to build system declarations, preprocessor defines, or being

removed outright. It's okay to make modifications that assume

compiler conformance with the ANSI C standard (c89).

There is currently no C++ interface to the core BRL-CAD libraries.

There are a few tools and enhancements to libraries that are

implemented in C++ (the new BREP object type in librt, for example),

and C++ is used underneath quite a number of libraries, but there is

presently no public C++ API in use outside of OpenNURBS.

While C++ as an implementation language of new tools and new library

interfaces is not prohibited, the mixing of C++ semantics and C++ code

(including simple // style comments) in the existing C files is not

allowed. As new interfaces are developed, new contributors become

involved, and C++ code integration becomes more prevalent, the

contributor guidelines will become reinforced with more details.

CODING STYLE & STANDARDS

For anyone who plans on contributing code, the following conventions

should be followed. Contributions that do not conform are likely to

be ridiculed and rejected until they do. ;-)

Violations of these rules in the existing code are not excuses to

follow suit. If code is seen that doesn't conform, it may and should

be fixed.

Code Organization:

Code that is potentially useful to another application, or that may be

abstracted in such a way that it is useful to other applications,

should be put in a library and not in application directories.

C files use the .c extension. Header files use the .h extension. C++

files use the .cpp extension. PHP files use the .php extension.

Tcl/Tk files use the .tcl/.tk extensions. POSIX Bourne-style shell

scripts use the .sh extension. Perl files use the .pl (program) or

.pm (module) extensions.

Source files go into the src/ directory on the top level, into a

corresponding directory for the category of binary or library that it

belongs to. Documentation files go into the doc/ directory on the top

level, with the exception of manual (man) pages that should be

colocated with any corresponding source files.

Header files private to a library go into that library's directory.

Public header files go into the include/ directory on the top level.

Public header files should not include any headers that are private.

Headers should include any other headers that they require for correct

parsing (this is an on-going clean-up effort). Public header files

should not include the common header.

Headers should be included in a particular order. That order is

generally as follows:

 - any single "interface" header [optional]

 - the common header (unless the interface header includes it)

 - system headers

 - public headers

 - private headers

Applications may optionally provide an interface header that defines

common structures applicable to most or all files being compiled for

that application. That interface header will generally be the first

file to be included, as it usually includes the common header and

system headers. The common header should always be included before

any system header. Standard C system headers should be included

before library system headers. Headers should be written to be

self-contained, not requiring other headers to be necessarily included

before they may be used. If another header is necessary for a header

to function correctly, it should include it.

Build System:

The CMake build system (more specifically, compilation test macros

defined in misc/CMake/BRLCAD_CheckFunctions.cmake) should be used

extensively to test for availability of system services such as

standard header files, available libraries, and data types. No

assumptions should be made regarding the availability of any

particular header, function, datatype, or other resource. After

running cmake, there will be an autogenerated include/brlcad_config.h

file that contains many preprocessor directives and type declarations

that may be used where needed.

Generic platform checks (e.g. #ifdef unix, #ifdef _WIN32) are highly

discouraged and should generally not be used. Replace system checks

with tests for the actual facility being utilized instead.

The Windows platform utilizes its own manually-generated configure

results header (include/config_win.h) that has to be manually updated

if new tests are added to the CMake build logic.

Only the BRL-CAD sources should include and utilize the common.h

header. They should not include brlcad_config.h or config_win.h

directly. If used, the common.h header should be listed before any

system headers.

Language Compliance:

Features of C that conform to the ISO/IEC 9899-1990 C standard (C90)

are generally the baseline for strict language conformance. As

BRL-CAD used to be K&R syntax conformant, there remains an on-going

effort to ensure a full conversion to a standards compliant ISO C

implementation.

Code Conventions:

Globals variables, structures, classes, and other public data

containers are highly discouraged within application code. Do not add

any new globals to existing libraries. Globals are often a quick

solution to some deeper coding problem. However, they carry

significant maintenance costs, introduce (spaghetti) code complexity,

make multi-threading support more costly, pollute public API

(symbol-wise at a minimum), increase security risks, are error-prone

to use, and usually complicate refactoring and code restructuring in

the future. Using static variables (whether function- or

static/file-scoped) is a viable alternative. Restructuring the logic

to not be stateful is even better.

Functions should always specify a return type, including functions

that return int or void. ANSI C prototypes should be used to declare

functions, not K&R function prototypes.

Exact floating point comparisons are unreliable without requiring

IEEE-compliant floating point math, but BRL-CAD does not require such

math for portability and performance reasons. When floating point

comparisons are necessary, use the NEAR_EQUAL and NEAR_ZERO macros

with a specified tolerance or the EQUAL and ZERO macros where a

tolerance is indeterminate (all the macros are available by including

vmath.h). Examples:

 For known tolerances:

 * instead of "foo == 2.0" use "NEAR_EQUAL(foo, 2.0, tol)"

 * instead of "foo != 0.0" use "foo !NEAR_ZERO(foo, tol)"

 For indeterminate tolerances:

 * instead of "foo == 2.0" use "EQUAL(foo, 2.0)"

 * instead of "foo != 0.0" use "foo !ZERO(foo)"

There are several functions whose functionality are either wrapped or

implemented in a cross-platform manner by libbu. This includes

functions related to memory allocation, command option parsing,

logging routines, and more. The following functions and global

variables should be utilized instead of the standard C facility:

 bu_malloc() instead of malloc()

 bu_calloc() instead of calloc()

 bu_realloc() instead of realloc()

 bu_fgets() instead of fgets()

 bu_free() instead of free()

 bu_log() instead of printf()

 bu_bomb() instead of abort()

 bu_exit() instead of printf()+exit()

 bu_dirname() instead of dirname()

 bu_getopt() instead of getopt()

 bu_opterr instead of opterr

 bu_optind instead of optind

 bu_optopt instead of optopt

 bu_optarg instead of optarg

 bu_strdup() instead of strdup()

 bu_strlcat() instead of strcat(), strncat(), and strlcat()

 bu_strlcpy() instead of strcpy(), strncpy(), and strlcpy()

 bu_strcmp() and BU_STR_EQUAL() instead of strcmp()

 bu_strcasecmp() and BU_STR_EQUIV() instead of stricmp()/strcasecmp()

 bu_strncmp() instead of strncmp()

 bu_strcasecmp() instead of strnicmp()/strncasecmp()

 bu_file_delete() instead of unlink(), rmdir(), and remove()

 bu_sort() instead of qsort()

Similarly, ANSI C functions are preferred over the BSD and POSIX

interfaces. The following functions should be used:

 memset() instead of bzero()

 memcpy() instead of bcopy()

The code should strive to achieve conformance with the GNU coding

standard with a few exceptions. One such exception is NOT utilizing

the GNU indentation style, but instead utilizing the BSD KNF

indentation style which is basically the K&R indentation style with 4

character indents. The following examples should be strictly adhered

to, if only for the sake of being consistent.

1) Indentation whitespace

Indents are 4 characters, tabs are 8 characters. There should be an

emacs and vi local variables block setting at the end of each file to

adopt, enforce, and otherwise remind one of this convention. The

following lines should be in all C and C++ source and header files at

the end of the file:

/*

 * Local Variables:

 * mode: C

 * tab-width: 8

 * indent-tabs-mode: t

 * c-file-style: "stroustrup"

 * End:

 * ex: shiftwidth=4 tabstop=8

 */

In emacs, the 'indent-region' command (bound to C-M-\ by default)

does a good job of making the needed changes to conform to this

convention. Vi can be configured to respect the ex: modeline by

adding 'set modeline=1' to your .vimrc configuration file. Microsoft

Visual Studio should have tabs size set to 8 and indent size set to 4

with tabs kept under Tools -> Options -> Text Editor -> C/C++ -> Tabs.

The exTabSettings project will also make MSVC conform by reading our

file footers.

A similar block can be used on source and script files in other

languages (such as Tcl, Shell, Perl, etc.). See the local variable

footer script in sh/footer.sh to automatically set/update files.

Here is an example where '.' represents a literal space character

(0x20) and '[]' represents a literal tab character (0x09):

int

main(int ac, char *av[])

{

....int i;

....int foo = 0;

....for (i = 0 ; i < 10; i++) {

[]foo += 1;

[]if (foo % 2) {

[]....printf("hello\n");

[]....if (foo > 5) {

[][]printf("world\n");

[]....}

[]}

....}

....return 0;

}

We may change this at some point in the future, but this is the style

for now. If this is confusing, use spaces to indent and run sh/ws.sh

to convert spaces to tabs. We value consistency in order to preserve

maintainability.

2) Stylistic whitespace

No space immediately inside parentheses.

 while (1) { ... /* ok */

 for (i = 0; i < max; i++) { ... /* ok */

 while (max) { ... /* discouraged */

Commas and semicolons are followed by whitespace.

 int main(int argc, char *argv[]); /* ok */

 for (i = 0; i < max; i++) { ... /* ok */

Operators and arguments generally are separated with whitespace.

 if (FLAG & MORE_FLAGS) { ... /* ok */

 for (i = 0; i < max; i++) { ... /* ok */

 if (FLAG&MORE_FLAGS) { ... /* discouraged */

 for (i=0; i<max; i++) { ... /* discouraged */

No space on arrow operators.

 structure->member = 5; /* ok */

 structure -> member = 5; /* bad */

Native language statements (if, while, for, switch, and return)

have a separating space, functions do not.

 int my_function(int i); /* ok, no space */

 while (argc--) ... /* ok, has space */

 if(var == val) /* discouraged */

 switch(foo) ... /* discouraged */

Comments should have an interior space and be without tabs.

 /** good single-line doxygen */

 /* good */

 /*bad*/

 /* discouraged */

 /* discouraged */

 /**

 * good:

 * multiple-line doxygen comment

 */

3) Braces

BRL-CAD uses the "The One True Brace Style" from BSD KNF and K&R.

Opening braces should be on the same line as their statement, closing

braces should line up with that same statement. Functions, however,

are treated specially and we place their opening braces on separate

lines. See http://en.wikipedia.org/wiki/Indent_style for details.

 int

 some_function(char *j)

 {

 for (i = 0; i < 100; i++) {

 if (i % 10 == 0) {

 j += 1;

 } else {

 j -= 1;

 }

 }

 }

4) Names

Variable and public API function names should almost always begin with

a lowercase letter.

 double localVariable; /* ok */

 double LocalVariable; /* bad (looks like class or constructor) */

 double _localVar; /* bad (looks like member variable) */

Variables are not to be "decorated" to show their type (i.e., do not

use Hungarian notation or variations thereof) with a slight exception

for pointers on occasion. The name should use a concise, meaningful

name that is not cryptic (typing a descriptive name is preferred over

someone else hunting down what was meant).

 char *name; /* ok */

 char *pName; /* discouraged for new code, but okay */

 char *fooPtr; /* bad */

 char *lpszFoo; /* bad */

Constants should be all upper-case with word boundaries optionally

separated by underscores.

 static const int MAX_READ = 2; /* ok */

 static const int arraySize = 8; /* bad */

Public API (global) function names are in lowercase with underscores

to separate words. Most functions within the core libraries are named

with the following convention: [library]_[group]_[action]

 bu_vls_strcat()

 bn_mat_transpose()

Naming exceptions are allowed where the API intentionally mirrors some

other familiar programming construct (e.g., bu_malloc()+bu_free()),

but care should otherwise be taken to be as consistent as possible

within a file and across a library's API.

Here are some naming convention pairings commonly used:

 Allocation => alloc()

 Deallocation => free()

 Initialization => init()

 De/Reinitialization => clear()

 Allocation + Init => create() (new for C++)

 Deinitialize + Dealloc => destroy() (delete for C++)

 Resource acquire => open()

 Resource release => close()

5) Debugging

Compilation preprocessor defines should never change the size of

structures.

 struct Foo {

 #ifdef DEBUG_CODE // bad

 int _magic;

 #endif

 };

6) Comments

"//" style comments are not allowed in C source files for portability.

Comment blocks should utilize an asterisk at the beginning of each new

line. Doxygen comments should start on the second line unless it's a

succinct /** single-line */ comment.

/* This is a

 * comment block.

 */

/**

 * This is a doxygen comment.

 */

7) Line length

We do not impose a fixed line length for source code. Comments blocks

are formatted to column 70.

Long 'if' statements and function prototypes are okay. Expressions

and function arguments are sometimes separated one per line where it

helps readability, but reducing the complexity of expressions and

number of function arguments is usually better.

DOCUMENTATION

BRL-CAD has extensive documentation in various formats and presently

maintained in various locations. It is an on-going desire and goal of

the project to have all documentation located along with the source

code in our Subversion (SVN) repository.

In line with that goal and where beneficial, a large portion of the

tutorial documentation is being converted to the DocBook XML format.

Having the tutorial documentation in the DocBook XML format allows for

easier maintenance, better export conversion support, and

representation in a textual format that may be revision controlled and

tracked.

Documenting Source Code:

The source code should always be reasonably documented, this almost

goes without saying for any body of code that is to maintain some

longevity. Determining just how much documentation is sufficient and

how much is too much is generally resolved over time, but it should

generally be looked at from the perspective of "If I look at this code

in a couple years from now, what would help me remember or understand

it better?" and add documentation accordingly.

All public library functions and most private or application functions

should be appropriately documented using Doxygen/Javadoc style

comments. Without getting into the advanced details, this minimally

means that you need to add an additional asterisk to a comment that

precedes your functions:

/**

 * Computes the answer to the meaning of life, the universe, and

 * everything.

 */

int

the_answer(void)

{

 return 42;

}

TESTING & DEBUGGING

BRL-CAD has extensive testing infrastructure in place to ensure tools

and APIs working a particular manner keep working in an expected way.

A testing failure usually indicates an unintended change to behavior

that must be reviewed with the provoking code justified, reverted, or

(most commonly) fixed. There are system integration, performance,

regression, and unit tests accessible through three primary build

targets.

The BRL-CAD Benchmark, contained in the bench/ directory, validates

critical raytrace library behavior:

 make benchmark

A series of system integration regression tests, described in a series

of scripts in the regress/ directory, examines applications:

 make regress

API unit testing is contained within tests/ subdirectories of the

respective library being tested (e.g., src/libbu/tests):

 make test

Note that changes to publicly documented tools and library APIs must

adhere to BRL-CAD's change policy. This means changes to any tests

may require thoughtful deployment. See the CHANGES file for details.

These tests are run nightly on BRL-CAD's server to catch problems

quickly - developers should be aware of the status of BRL-CAD's tests

as seen at http://brlcad.org/CDash

To add new regression tests, look at regress/weight.sh for an

integration test example and src/libbu/tests/bu_vls_vprintf.c for an

API unit test example. See their corresponding CMakeLists.txt build

file for examples of how they are added to the build. Individual

regression tests have separate regress-TARGET build targets defined

(e.g., make regress-weight) to facilitate manual testing.

In addition to benchmark, regression, and unit testing, individual

programs may be tested after a build without installing by running

them from the build directory. Typically, installed binaries will be

found in the bin/ subdirectory of the top-level build directory, e.g.:

 ./bin/mged

Binaries not intended for installation (i.e., marked NO_INSTALL in the

CMakeLists.txt file) are in a build path corresponding to the source

code location, e.g. the unit tests in src/libbu/tests compile into

binaries in the path/to/builddir/src/libbu/tests build directory.

A profile build, useful for some types of performance inspection

(e.g., gprof) but not enabled by default, may be specified via:

 cmake .. -DBRLCAD_ENABLE_PROFILING=ON

Debug symbols are enabled by default, even for installation, for all

libraries and binaries in order to facilitate diagnosing and

inspecting problems. Graceful crashes (i.e., an application "bomb")

may result in a crash log (named appname-#####-bomb.log) getting

written out on platforms that have the GNU Debugger (gdb) available.

On most platforms, gdb can also be interactively utilized to inspect a

reproducible crash (graceful or otherwise):

$ gdb --args bin/mged -c file.g

...

gdb> break bu_bomb

gdb> run

...[interact with application until it crashes or bombs]

gdb> backtrace

PATCH SUBMISSION GUIDELINES

To contribute to BRL-CAD, begin by submitting modifications to the

patches section at http://sf.net/projects/brlcad/. Patches in the

unified diff format (diff -u) are generally preferred when modifying

existing source or other text files. Otherwise, contributors are

welcome to submit their changes in full to the patches tracker as

compressed file attachments.

All text patches should be submitted in the unified diff format where

it's feasible to create one either using SVN or using the unmodified

original file. This is generally the "-u" option to diff, and is also

supported by the SVN diff command:

 svn diff > mychanges.patch

Where possible, patch files should be generated against the latest

sources available to make it easier to review and apply the changes.

If a modification involves the addition or removal of files, those

files can be provided separately with instructions on where they

belong (or what should be removed). If SVN cannot be used, please

provide the complete release and build number of the files you worked

with.

ANY MODIFICATIONS THAT ARE PROVIDED MUST NOT MODIFY OR CONFLICT WITH

THE EXISTING "COPYING" FILE DISTRIBUTION REQUIREMENTS. This means

that most modifications must be LGPL-compatible. Contributors are

asked to only provide patches that may legally be incorporated into

BRL-CAD under the existing distribution provisions described in the

COPYING file.

Patches that are difficult to apply are difficult to accept.

BUGS & UNEXPECTED BEHAVIOR

When a bug or unexpected behavior is encountered that cannot be

quickly fixed, it needs to be documented in our BUGS file or more

formally reported to the SourceForge bug tracker at:

http://sourceforge.net/tracker/?atid=640802&group_id=105292&func=browse

The tracker is the main source for user-reported bugs and/or any

issues that require significant discussion or benefit from having

their status publicly announced. Issues listed in BUGS file are not

necessarily listed in the tracker, and vice-versa. The BUGS file is

also a convenience notepad of long and short term development issues.

COMMIT ACCESS

Commit access is evaluated on a person-to-person basis at the

discretion of existing contributors. Commit access is generally

granted after a contributor demonstrates strong competency with our

developer guidelines and an existing developer with commit access

vouches for the new developer.

If you would like to have commit access, do not ask for it. Getting

involved with the other contributors and making patches will result in

automatic consideration for commit access. That said, the following

steps represent a minimum that needs to occur in order for commit

access to be granted:

1) Read this file completely.

2) Be able to compile BRL-CAD successfully from an SVN trunk checkout.

3) Join the brlcad-devel developer mailing list, introduce yourself.

4) Create a SourceForge account, submit at least two patches that

demonstrate competency with our coding style, apply flawlessly, and

provide some significant improvement.

5) Get to know the other developers. One of them will need to vouch

for your commit access.

*) Be a nice person. ;)

Those with commit access have a responsibility to ensure that other

developers are following the guidelines that have been described in

this developer's guide within reasonable expectations. A basic rule

of thumb is: don't break anything.

CONTRIBUTOR RESPONSIBILITIES

Contributors of BRL-CAD that are granted commit access are expected to

uphold standards of conduct and adhere to conventions and procedures

outlines in this guide. All contributors are directly supporting the

on-going development of BRL-CAD by being granted commit access. As

such, these individuals are also considered "developers" whether they

are modifying source code or not, and have similar obligations and

expectations. To summarize some of the expected responsibilities:

0) Primum non nocere. All contributors are expected in good faith to

help, or at least to do no harm. Be helpful and respectful.

1) Developers are expected to uphold the quality, functionality,

maintainability, and portability of the source code at all times. In

part, this means that changes should be tested to avoid breaking the

build and short-term fixes are discouraged. Committing code that is

actively being worked on is encouraged but care should be taken to

minimize impact on others and to respond quickly when an issue arises.

2) Bugs, typos, and compilation errors are to be expected as part of

the process of active software development and documentation, but it

is ultimately unacceptable to allow them to persist. If it is

discovered that a recent modification introduces a new problem, such

as causing a compilation portability failure, then it is the

responsibility of the contributor that introduced the change to assist

in resolving the issue promptly. It is the responsibility of all

developers to address issues as they are encountered regardless of who

introduces the problem.

3) Contributors making commits to the repository are required to

uphold the legal conventions and requirements summarized in the

COPYING file. This includes the implicit assignment of copyright to

the U.S. Government on all contributed code unless otherwise

explicitly arranged as well as the usage of appropriate license

headers in all files where expected. Contributors are also expected

to denote appropriate credits into the AUTHORS file when applying

contributed code and patches.

4) It is expected that developers will adhere to the coding style

conventions and filesystem organization outlined in this developer's

guide. This includes the utilization of the specified coding style as

well as the prescribed K&R indentation convention.

5) Contributors are expected to communicate with other contributors

and to avoid code or file territorialism. All contributors are

expected and encouraged to fix problems as they are found regardless

of where in the package they are located. Care should of course be

taken to ensure that fixing in a bug in a section of code does not

introduce other issues, especially for unfamiliar code. All

contributors are expect to communicate their changes publicly by

keeping documentation up-to-date, including making note of

user-visible changes in the NEWS file following the inscribed format

convention.

VERSION NUMBERS & COMPATIBILITY

The BRL-CAD version number is in the include/conf directory in the

MAJOR, MINOR, and PATCH files. The README, ChangeLog, and NEWS files

as well as a variety of documents in the doc/ directory may also make

references to version numbers. See the MAKING A RELEASE steps listed

below for a more concise list of what needs to be updated.

Starting with release 7.0.0, BRL-CAD has adopted a three-digit version

number convention for identifying and tracking future releases. This

number follows a common convention where the three numbers represent:

 {MAJOR_VERSION}.{MINOR_VERSION}.{PATCH_VERSION}

All "development" builds use an odd number for the minor version. All

"release" builds use an even number for the minor version. Patched

versions should include a release count:

 {MAJOR_VERSION}.{MINOR_VERSION}.{PATCH_VERSION}[-{RELEASE_COUNT}]

The MAJOR_VERSION should only increment when it is deemed that a

significant amount of major changes have accumulated, new features

have been added, or enough significant backwards incompatibilities

were added to make a release warrant a major version increment. In

general, releases of BRL-CAD that differ in the MAJOR_VERSION are not

considered compatible with each other.

The MINOR_VERSION is updated more frequently and serves the dual role

as previously mentioned of easily identifying a build as a public

release. A minor version update is generally issued after significant

development activity (generally several months of activity) has been

tested and deemed sufficiently stable.

The PATCH_VERSION may and should be updated as frequently as is

necessary. Every public maintenance release should increment the

patch version. Every development version modification that is

backwards incompatible in some manner should increment the patch

version number.

If it becomes necessary to update a posted release, use and increment

the RELEASE_COUNT. The first posted release is implicitly the "-0"

release count (e.g., 7.10.2 is implicitly 7.10.2-0) with subsequent

updated releases incrementing the count (e.g., 7.10.2-1).

NAMING A SOURCE RELEASE

In order to achieve some consistency when preparing a source release,

the following format should be used as the filename convention:

 brlcad-{VERSION}.{EXTENSION}

VERSION is the usual version triplet described above under the section

entitled VERSION NUMBERS & COMPATIBILITY. Example: 7.12.4

EXTENSION is the filename extension. Compressed tar files should use

the expanded form (i.e. not tgz, etc.) unless otherwise dictated as

necessary convention by a source package management system. Examples:

 tar.gz

 tar.bz2

 dmg

 exe

 zip

NAMING A BINARY RELEASE

In order to achieve some consistency when preparing a binary release,

the following format should be used as the filename convention:

 BRL-CAD_{VERSION}[_{OS}][_{VENDOR}][_{CPU}][_{NOTE}].{EXTENSION}

Notably, the filename should use 'BRL-CAD' instead of 'brlcad' for the

name unless technically problematic, it should delimit sections of the

filename with underscores instead of spaces, dots, or dashes, and

should always include the version number and an extension for the file

type. The optional _{OS}_{VENDOR}_{CPU} portion is a reverse (and

simplified version) of the GNU autotools config.guess canonical host

triplet identifier.

VERSION is the usual version triplet described above under the section

entitled VERSION NUMBERS & COMPATIBILITY. Example: 7.12.4 or 7.10.2-1

OS is an optional identifier for the target operating system for

binary distributions. It should only be used if the file extension is

not already platform specific (e.g., .dmg already indicates Mac OS X,

.exe indicates Windows, etc.). The OS name can be the same as the GNU

autotools OS identifier without the version number. If there are

other platform considerations like the version of libc or the version

of the OS that need to be called out, they can be included. Examples:

 freebsd

 linux

 linux_glibc3

 solaris

VENDOR is an optional operating system qualifier that isn't necessary

for most platforms. It's generally only useful for vendors that use

customized versions of common operating systems. An example would be

something like SGI using a fairly customized variant of Linux on their

Altix line. In that case, it's useful to include the vendor: sgi

CPU is the hardware architecture identifier. It should be the first

identifier in the config.guess triplet or the lowercase hardware

identifier returned by uname -a (if any). Examples:

 x86

 x86_64

 ia64

 sparc

 ppc

 power5

 mips

 mips_64

NOTE can be just about anything but should only be used when

absolutely necessary. As an example, a note might be used to indicate

that a binary distribution is a partial or custom release. Examples:

 dll

 benchmark

EXTENSION is the filename extension. Compressed tar files should use

the expanded form (i.e. not tgz, etc.) unless otherwise dictated as

necessary convention by a binary package management system. Examples:

 tar.gz

 tar.bz2

 dmg

 exe

 zip

PATCHING A RELEASE

Should it become necessary to patch a release that has already been

posted and announced, the mechanism is to post patch files for the

source release and update the uploaded release notes README file.

Example: stop_rt_crashing-0.patch and fix_fbserv-1.patch

It's expected that all patch files are independent and will be applied

sequentially. They should be consistently and incrementally numbered.

Users should be instructed in the release notes README to download and

apply all available patch files.

For binary releases, it's recommended to just "move on" and let issues

become resolved in the next release unless there's a critical security

or significant data corruption issue involved. If it becomes

necessary to repost a release, use the RELEASE_COUNT file name

convention described in VERSION NUMBERS & COMPATIBILITY.

Example: BRL-CAD-7.12.2.dmg is superseded by BRL-CAD-7.12.2-1.dmg

Patched binary releases may be moved to the hidden attic folder if

critical, though not necessary or recommended. They are preserved for

historic record and should never be deleted once announced. Releases

not yet been announced may be updated within two days of being posted

without involving a patch.

MAKING A RELEASE

BRL-CAD is developed on a monthly iteration development schedule with

a release planned (not always actualized) at the end of every month.

In order to make a release, the sources need to be appropriately

documented, tested, synchronized, and tagged. BRL-CAD releases must

pass strict verification and validation testing.

Any developer may cause a release to be made provided testing passes

and the appropriate release steps are taken.

When a release intention is announced, it is recommended to sync the

trunk sources to the RELEASE branch so appropriate review testing,

repairs, and release steps can occur without being impacted by other

development activity.

Release steps are as follows:

00: Notify developer mailing list of intention to release.

 echo "Release preparations are under way. Trunk sources merged to

the RELEASE branch will be reviewed for sync to STABLE and release

tagging. Please help test by compiling distcheck-full and running

benchmark, mged, and archer." | mail -s "Release preparations commencing"

brlcad-devel@lists.sourceforge.net -r "your@subscribed.address"

01: Sync trunk to RELEASE branch.

 # NON-AUTO: Review the log and obtain the last trunk merge

 # revision number from comments.

 svn log --stop-on-copy

https://svn.code.sf.net/p/brlcad/code/brlcad/branches/RELEASE | grep -E

'r[0-9]{5}'

 PREV=[[last_trunk_rev]]

 echo "PREV=$PREV"

 svn co svn://svn.code.sf.net/p/brlcad/code/brlcad/branches/RELEASE

brlcad.RELEASE

 cd brlcad.RELEASE

 svn merge https://svn.code.sf.net/p/brlcad/code/brlcad/trunk@$PREV

https://svn.code.sf.net/p/brlcad/code/brlcad/trunk@HEAD .

02: Test the merge.

 mkdir -p .build && cd .build

 cmake .. -DBRLCAD_BUNDLED_LIBS=ON -DCMAKE_BUILD_TYPE=Release && make

 # Manually check rt, mged, and archer.

 bin/rt # should report usage with correct library versions

 bin/mged -c test.g "make sph sph ; draw sph ; rt" # pops up a

sphere

 bin/mged # displays gui, run: opendb test.g ; draw sph ; rt

 bin/archer # displays gui, run: opendb test.g ; draw sph ; rt

 # clean up

 cd .. && rm -rf .build

03: Commit the merge.

 CURR=`svn log --xml

https://svn.code.sf.net/p/brlcad/code/brlcad/trunk | grep 'revision=' |

head -n 1 | sed 's/.*="\([0-9][0-9]*\)".*/\1/g'`

 echo "CURR=$CURR"

 svn commit -m "merge of trunk to RELEASE branch, r$PREV through

r$CURR"

04: Reprioritize or address remaining TODO items.

 # NON-AUTO: Do what's necessary to release, update priorities.

05: Review all commits.

 # NON-AUTO: Verify all user-visible changes are in NEWS.

 # NON-AUTO: Verify all interface changes are in CHANGES.

 # NON-AUTO: Verify usage/options are documented in doc/.

06: Update the version numbers.

 # NON-AUTO: NEWS

 # NON-AUTO: README

 # NON-AUTO: include/conf/PATCH

 # NON-AUTO: include/conf/MINOR (See VERSION NUMBERS & COMPATIBILITY

section.)

 # NON-AUTO: misc/debian/changelog

 # NON-AUTO: misc/macosx/Resources/ReadMe.rtfd/TXT.rtf

 # NON-AUTO: misc/macosx/Resources/Welcome.rtfd/TXT.rtf

07: Update ChangeLog. Use the YYYY-MM-DD of previous NEWS entry.

 LAST=`grep -E "\--- [0-9]{4}-[0-9]{2}-[0-9]{2}" NEWS | head -n 2 |

tail -n 1 | awk '{print $2}'`

 echo "LAST=$LAST"

 LAST=r57446

 svn2cl --break-before-msg --include-rev --stdout -r HEAD:{$LAST} >

ChangeLog

 svn commit -m "update log with commits through $LAST" ChangeLog

08: Run distcheck-full on at least two platforms.

 mkdir -p .build && cd .build && cmake .. && make distcheck-full

09: Sync RELEASE to STABLE branch:

 # Update the NEWS release date for the current release to today's

date

 # NON-AUTO: Review the log and obtain the last merge revision

 # number from comments.

 svn log --stop-on-copy

https://svn.code.sf.net/p/brlcad/code/brlcad/branches/STABLE | less

 PREV=[[last_trunk_rev]]

 ### OR ###

 PREV=`svn log --xml --stop-on-copy

https://svn.code.sf.net/p/brlcad/code/brlcad/branches/STABLE | grep

'revision=' | head -n 1 | sed 's/.*revision="\([0-9][0-9]*\)".*/\1/g'`

 echo "PREV=$PREV"

 # merge that range of changes into STABLE

 svn co https://svn.code.sf.net/p/brlcad/code/brlcad/branches/STABLE

brlcad.STABLE && cd brlcad.STABLE

 svn merge

https://svn.code.sf.net/p/brlcad/code/brlcad/branches/RELEASE@$PREV

https://svn.code.sf.net/p/brlcad/code/brlcad/branches/RELEASE@HEAD .

10: Test the merge.

 mkdir .merge && cd .merge

 cmake .. -DBRLCAD_BUNDLED_LIBS=ON -DCMAKE_BUILD_TYPE=Release && make

distcheck-full && cd .. && rm -rf .merge

11: Commit the merge.

 CURR=`svn log --xml

https://svn.code.sf.net/p/brlcad/code/brlcad/branches/RELEASE | grep

'revision=' | head -n 1 | sed 's/.*="\([0-9][0-9]*\)".*/\1/g'`

 echo "CURR=$CURR"

 svn commit -m "merging RELEASE branch to STABLE branch, r$PREV

through r$CURR"

12: Tag the release using "rel-MAJOR-MINOR-PATCH" format:

 MAJOR=`awk '{print $1}' include/conf/MAJOR`

 MINOR=`awk '{print $1}' include/conf/MINOR`

 PATCH=`awk '{print $1}' include/conf/PATCH`

 echo "Tagging rel-$MAJOR-$MINOR-$PATCH"

 svn cp https://svn.code.sf.net/p/brlcad/code/brlcad/branches/STABLE

https://svn.code.sf.net/p/brlcad/code/brlcad/tags/rel-$MAJOR-$MINOR-

$PATCH

13: Increment and commit the next BRL-CAD release numbers to SVN.

 # Update the include/conf/(MAJOR|MINOR|PATCH) version files

 # immediately to odd-numbered minor version or new patch developer

 # version (e.g. 7.11.0 or 7.34.1). Update README and NEWS version

 # to next *expected* release number (e.g. 7.12.0 or 7.34.2).

 echo "`expr $PATCH + 1`" > include/conf/PATCH

 NEXT="`expr $PATCH + 2`"

 perl -pi -e "s/Release [0-9]+\.[0-9]+\.[0-9]+/Release

$MAJOR.$MINOR.$NEXT/" README

 EXPR="s/(@---[[:space:]@-]*[0-9]{4}-)([0-9]{2}-[0-

9]{2})([[:space:]]*Release[[:space:]]*${MAJOR}\.${MINOR}\.)(${PATCH})([[:

space:]@-]*-@)/\$1XX-XX\${3}${NEXT}\$5@* TBD@@\1\2\3\4\5/"

 cat NEWS | tr '\n' '@' | perl -pi -e "$EXPR" | tr '@' '\n' > NEWS

 svn commit -m "bump to next development revision after tagging the

$MAJOR.$MINOR.$PATCH release" ../include/conf/PATCH

14: Sync RELEASE changes back to trunk.

 # Work-in-progress

15: Obtain a tagged version of the sources from the repository, make

final distribution tarballs:

 svn checkout https://svn.code.sf.net/p/brlcad/code/brlcad/tags/rel-

$MAJOR-$MINOR-$PATCH brlcad-$MAJOR.$MINOR.$PATCH

 cd brlcad-$MAJOR.$MINOR.$PATCH-build && mkdir .build && cd .build

 cmake .. -DBRLCAD_BUNDLED_LIBS=ON -DCMAKE_BUILD_TYPE=Release && make

distcheck-full

16: Upload the source distributions and release notes. Use source

tarballs to create binaries.

 # create a shell session and source dir

 SFUSERNAME=`ls ~/.subversion/auth/svn.simple/* | xargs -n 1 grep -A4

sourceforge | tail -1`

 echo "SFUSERNAME=$SFUSERNAME MAJOR=$MAJOR MINOR=$MINOR PATCH=$PATCH"

 ssh -v $SFUSERNAME,brlcad@shell.sf.net create

 ssh -v $SFUSERNAME,brlcad@shell.sf.net mkdir

"/home/frs/project/brlcad/BRL-CAD\ Source/$MAJOR.$MINOR.$PATCH"

 # create binary dirs (as needed)

 ssh -v $SFUSERNAME,brlcad@shell.sf.net mkdir

"/home/frs/project/brlcad/BRL-CAD\ Runtime\

Libraries/$MAJOR.$MINOR.$PATCH"

 ssh -v $SFUSERNAME,brlcad@shell.sf.net mkdir

"/home/frs/project/brlcad/BRL-CAD\ for\ BSD/$MAJOR.$MINOR.$PATCH"

 ssh -v $SFUSERNAME,brlcad@shell.sf.net mkdir

"/home/frs/project/brlcad/BRL-CAD\ for\ Linux/$MAJOR.$MINOR.$PATCH"

 ssh -v $SFUSERNAME,brlcad@shell.sf.net mkdir

"/home/frs/project/brlcad/BRL-CAD\ for\ Mac\ OS\ X/$MAJOR.$MINOR.$PATCH"

 ssh -v $SFUSERNAME,brlcad@shell.sf.net mkdir

"/home/frs/project/brlcad/BRL-CAD\ for\ Windows/$MAJOR.$MINOR.$PATCH"

 # upload source dist and any binaries

 scp brlcad-$MAJOR.$MINOR.$PATCH*

"$SFUSERNAME,brlcad@shell.sf.net:/home/frs/project/brlcad/BRL-CAD\

Source/$MAJOR.$MINOR.$PATCH/."

 # extract and upload release notes to source dir

 cat ../NEWS | tr '\n' '@' | perl -p -e "s/.*?(@---[[:space:]@-]*[0-

9]{4}-[0-9]{2}-[0-

9]{2}[[:space:]]*Release[[:space:]]*${MAJOR}\.${MINOR}\.${PATCH}[[:space:

]@-]*.*?)@---.*/\1/" | tr '@' '\n' > README-${MAJOR}-${MINOR}-

${PATCH}.txt

 echo "Release notes for $MAJOR.$MINOR.$PATCH" && echo "==="

 cat README-$MAJOR-$MINOR-$PATCH.txt && echo "==="

 scp README-$MAJOR-$MINOR-$PATCH.txt

"$SFUSERNAME,brlcad@shell.sf.net:/home/frs/project/brlcad/BRL-CAD\

Source/$MAJOR.$MINOR.$PATCH/."

 # NON-AUTO: Following the NAMING A BINARY RELEASE convention,

 # upload any release binaries and platform-specific release notes.

 scp README-$MAJOR-$MINOR-$PATCH.txt

"$SFUSERNAME,brlcad@shell.sf.net:/home/frs/project/brlcad/BRL-CAD\

Runtime\ Libraries/$MAJOR.$MINOR.$PATCH/."

 scp README-$MAJOR-$MINOR-$PATCH.txt

"$SFUSERNAME,brlcad@shell.sf.net:/home/frs/project/brlcad/BRL-CAD\ for\

BSD/$MAJOR.$MINOR.$PATCH/."

 scp README-$MAJOR-$MINOR-$PATCH.txt

"$SFUSERNAME,brlcad@shell.sf.net:/home/frs/project/brlcad/BRL-CAD\ for\

Linux/$MAJOR.$MINOR.$PATCH/."

 scp README-$MAJOR-$MINOR-$PATCH.txt

"$SFUSERNAME,brlcad@shell.sf.net:/home/frs/project/brlcad/BRL-CAD\ for\

Mac\ OS\ X/$MAJOR.$MINOR.$PATCH/."

 scp README-$MAJOR-$MINOR-$PATCH.txt

"$SFUSERNAME,brlcad@shell.sf.net:/home/frs/project/brlcad/BRL-CAD\ for\

Windows/$MAJOR.$MINOR.$PATCH/."

 # NON-AUTO: Be sure to mark binaries as default download, then

 # close shell session

 ssh -v $SFUSERNAME,brlcad@shell.sf.net shutdown

17: Notify binary platform maintainers:

 T2 package maintainer

 http://t2-project.org/packages/brlcad.html

 OpenSUSE package maintainer

 https://build.opensuse.org/package/users/Education/brlcad

 FreeBSD ports maintainer

 http://www.freebsd.org/cgi/cvsweb.cgi/ports/cad/brlcad/

 Gentoo portage maintainer

 http://packages.gentoo.org/package/media-gfx/brlcad

 Ubuntu/Debian .deb maintainer

 Jordi Sayol <g.sayol@yahoo.es>

 Debian apt package maintainer

 http://git.debian.org/?p=debian-science/packages/brlcad.git

 Slackware maintainer

 http://slackbuilds.org/result/?search=brlcad

 Fedora maintainer

 https://fedoraproject.org/wiki/User:Germano#Contact

18: Announce the new release.

The NEWS file should generally be used as a basis for making release

announcements though the announcements almost always require

modification and customization tailored to the particular forum and

audience. Always notify the following when a release is made:

 BRL-CAD Website (authorized can submit)

 http://brlcad.org/d/node/add/story

 BRL-CAD NEWS Mailing List (anyone can submit, posting moderated)

 brlcad-news@lists.sourceforge.net

 BRL-CAD SourceForge NEWS (authorized can submit)

 https://sourceforge.net/p/brlcad/news/new

 BRL-CAD on Facebook (authorized can submit)

 http://www.facebook.com/pages/BRL-CAD/387112738872

 short summary without news details (sentence format)

 BRL-CAD on Twitter (authorized can submit)

 http://twitter.com/#!/BRL_CAD

 short summary without news details (whatever fits)

If appropriate, notify and/or update the following information outlets

with the details of the new release:

Linux release:

 CAD on Linux mailing list (plain text)

 cad-linux@freelists.org

 with linux-specific details

 CAD on Linux Dev mailing list

 cad-linux-dev@freelists.org

 with developer-centric details

 Linux Softpedia

 http://linux.softpedia.com/get/Multimedia/Graphics/BRL-CAD-

105.shtml

Mac OS X release:

 Versiontracker (only 'brlcad' can update)

 http://www.versiontracker.com/dyn/moreinfo/macosx/26289

 http://www.versiontracker.com/dyn/moreinfo/win/64903

 short without news details (list format)

 Mac Softpedia (anyone can update)

 http://mac.softpedia.com/user/pad.shtml

 maceditor@softpedia.com

 (either provide doc/pad_file.xml or e-mail)

 http://mac.softpedia.com/get/Multimedia/BRLCAD.shtml

 Fink package maintainer

 jack@krass.com

Multiple platform major release and announcements:

 CADinfo.NET

 copyboy@cadinfo.net

 with news details

 TenLinks Daily

 http://www.tenlinks.com/NEWS/tl_daily/submit_news.htm

 news@tenlinks.com

 with news details

 Slashdot

 http://slashdot.org

 short without news details

 DevMaster.net (if engine-related)

 http://www.devmaster.net/news/submit.php

 CADCAM Insider (plain text)

 http://cadcam-insider.com/index.php/News-submission-guidelines.html

 copyboy@cadcam-insider.com

19: Sit back and enjoy a beverage for a job well done.

GETTING HELP

See the GETTING STARTED section above. Basically, communicate with

the existing developers. There is an IRC channel, e-mail mailing

lists, and on-line forums dedicated to developer discussions.

