

Contributors' Guide To BRL-CAD

Table of contents
1. Getting Started

 A Call to Arms...

 Feature Overview..

2. Developers

 Working with Our Code...

 What Code to Work On..

 Contributing Code...

3. Documenters

 Working with Our Documentation...

 Types of Documentation We Maintain..

 What Documentation to Work On...

 Contributing Documentation..

4. Other Contributors

 You Can Help Too...

5. Appendix: Resources and Examples

 Further References and Resources..

 Doc Template: New MGED Command..

 Code Example: Shooting Rays...

 Code Example: Walking Geometry..

 Code Example: Command Plugin..

 Code Example: Root Solving...

Contributors' Guide To BRL-CAD

1. GETTING STARTED

A Call to Arms (and Contributors)

What is BRL-CAD?

BRL-CAD (pronounced be-are-el-cad) is a powerful, cross-platform, open source solid

modeling system that includes interactive three-dimensional (3D) solid geometry

editing, high-performance ray tracing support for rendering and geometric analysis,

network-distributed framebuffer support, image and signal-processing tools, path

tracing and photon mapping support for realistic image synthesis, a system

performance analysis benchmark suite, an embedded scripting interface, and libraries

for robust high-performance geometric representation and analysis.

For more than two decades, BRL-CAD has been the primary solid

modeling CAD package used by the U.S. government to help model military

systems. The package has also been used in a wide range of military, academic, and

industrial applications, including the design and analysis of vehicles, mechanical parts,

and architecture. Other uses have included radiation dose planning, medical

visualization, terrain modeling, constructive solid geometry (CSG), modeling concepts,

computer graphics education and system performance benchmark testing.

BRL-CAD supports a wide variety of geometric representations, including an extensive

set of traditional implicit "primitive shapes" (such as boxes, ellipsoids, cones, and tori) as

 "The future exists first in the imagination, then in the will,

then in reality." - Mike Muuss

Welcome to BRL-CAD! Whether you are a developer, documenter, graphic

artist, academic, or someone who just wants to be involved in a unique open

source project, BRL-CAD has a place for you. Our contributors come from all

over the world and use their diverse backgrounds and talents to help

maintain and enhance one of the oldest computer-aided design (CAD)

packages used in government and industry today.

Contributors' Guide To BRL-CAD

well as explicit primitives made from collections of uniform B-spline surfaces, non-uniform

rational B-spline (NURBS) surfaces, n-manifold geometry (NMG), and purely faceted

polygonal mesh geometry. All geometric objects may be combined using boolean set-

theoretic CSG operations such as union, intersection and difference.

Overall, BRL-CAD contains more than 400 tools, utilities, and applications and has

been designed to operate on many common operating system environments,

including BSD, Linux, Solaris, Mac OS X, and Windows. The package is distributed in

binary and source code form as Free Open Source Software (FOSS), provided under

Open Source Initiative (OSI) approved license terms.

History and Vision

BRL-CAD was originally conceived and written by the late Michael Muuss, the inventor

of the popular PING network program. In 1979, the U.S. Army Ballistic Research

Laboratory (BRL) (the agency responsible for creating ENIAC, the world's first general-

purpose electronic computer in the 1940s) identified a need for tools that could assist

with the computer simulations and analysis of combat vehicle systems and

environments. When no existing CAD package was found to be adequate for this

specialized purpose, Mike and fellow software developers began developing and

assembling a unique suite of utilities capable of interactively displaying, editing, and

interrogating geometric models. Those early efforts subsequently became the

foundation on which BRL-CAD was built.

Development of BRL-CAD as a unified software package began in 1983, and its first

public release came in 1984. Then, in 2004, BRL-CAD was converted from a limited-

distribution U.S. government-controlled code to an open source project, with portions

licensed under the LGPL and BSD licenses.

Today, the package's source code repository is credited as being the world's oldest,

continuously developed open source repository. As a project, pride is taken in

preserving all history and contributions.

The ongoing vision for BRL-CAD development is to provide a robust, powerful, flexible,

and comprehensive solid modeling system that includes:

 Faithful high-performance geometric representation.

 Efficient and intuitive geometry editing.

 Comprehensive conversion support for all solid geometry formats.

 Effective geometric analysis tools for 3D CAD.

Contributors' Guide To BRL-CAD

Key Strengths

All CAD packages are not alike. Among the many strengths of the BRL-CAD package

are the following:

 BRL-CAD is open source! Don't like something? You can make it better.

 You can leverage decades of invested development. BRL-CAD is the most

feature-filled open source CAD system available, with hundreds of years time

invested.

 Your work will get used. BRL-CAD is in production use and downloaded

thousands of times every month by people all around the world.

 You have the ability to create extensively detailed realistic models.

 You can model objects on scales ranging from (potentially) the subatomic

through the galactic, while essentially providing all the details, all the time.

 You can leverage one of the fastest raytracers in existence (for many types of

geometry).

 You can convert to and from a wide range of geometry file formats.

 BRL-CAD has a powerful, customizable scripting interface with many advanced

editing and processing capabilities.

Want to Be a Contributor?

With BRL-CAD being a part of the open source community since 2004, contributors from

all over the world are able to enhance the features and functions of the package in

many different ways. In return, these contributors have had a unique opportunity to:

 Join a team of passionate and talented contributors who share the common

values of open source development. Open source emphasizes free

redistribution; openly available source code; full, open participation; and

nondescrimination against individuals, groups, technologies, or fields of interest.

(To learn more, see http://opensource.org.)

 Drive needed improvements in the open source software community's support

for solid modeling and CAD software capabilities.

 Experiment with new and state-of-the-art algorithms and ideas within the context

of a fully open CAD system that is in production use and has an established user

community.

 Become a better developer. Whether you're a newbie or a seasoned developer

with decades of experience, you can always work on a BRL-CAD project that is

catered toward improving your abilities.

http://opensource.org/

Contributors' Guide To BRL-CAD

 Become part of a legacy. Participate in a robust and historically significant open

source project that goes all the way back to the days of the DEC PDP-11/70 and

VAX-11/780.

 Gain practical experience working on a real-world, large-scale software project.

If you would like to be a BRL-CAD contributor, the primary areas currently identified for

future development and enhancement include the following:

 Improved graphical user interface and usability to accommodate increasingly

varied user needs and participation levels. This includes improving the look-and-

feel and features of:

o the primary editing graphical interface (MGED)

o the geometric visualization and interaction management system (libdm).

 Improved hybrid boundary representation geometry support to support all 3D

CAD models regardless of whether they use implicit or explicit geometric

representation. Geometry formats we are particularly focusing on include:

o volumetric models (VOL)

o spline-surface (for example, NURBS) and polygonal (for example, triangle

mesh) boundary representations (BREP)

o implicit primitives.

 Improved geometry services and functionality, including the ability to provide:

o multiuser access controls

o comprehensive revision history

o collaborative enhanced multiuser modeling

o more flexible application development.

In addition, BRL-CAD's existing geometry kernel functions are continuously being

refactored. Help turn them into a comprehensive, scriptable command framework,

create an object-oriented geometry kernel application programming interface (API), or

build a lightweight network daemon protocol for language agnostic client application

development.

 Improved open source awareness and increased development participation via:

o establishing strong open source community ties

o improving software documentation

o openly welcoming new contributors and users.

Let the contributions begin!

Contributors' Guide To BRL-CAD

Feature Overview

Solid Geometry

BRL-CAD has thousands of distinct features that have been developed over a

number of decades. One strength of a solid modeling system with integrated high-

performance rendering is the ability to showcase some of those features

graphically.

Let's take a quick look at just some of the high-level features provided by BRL-CAD.

BRL-CAD focuses on solid

modeling CAD. Solid

modeling is distinguished from

other forms of geometric

modeling by an emphasis on

being physically accurate,

fully describing 3D space.

Shown is a 3D model of a

Goliath tracked mine, a

German-engineered remote

controlled vehicle used during

World War II. This model was

created by students new to

BRL-CAD in the span of about

2 weeks, starting from actual

measurements in a museum.

Contributors' Guide To BRL-CAD

Raytracing

Raytracing is central to BRL-CAD as a means for performing

geometric analysis (e.g., calculating weights and moments

of inertia) and for rendering images for visualization

purposes. The image shown is a BRL-CAD 2D framebuffer

screenshot displaying the rendering of a ball bearing. The

bearing is modeled with a material appearance resembling

acrylic glass, and this raytracing result shows reflection,

refraction, shadowing, and some caustic effects.

Contributors' Guide To BRL-CAD

Geometry Conversion

As shown, a BRL-CAD target description can be converted to a finite element

mesh (FEM) using the BRL-CAD g-sat exporter and Cubit from Sandia National

Laboratories.

This screenshot shows a

model imported from the

Rhino3D 3DM file format into

BRL-CAD as NURBS boundary

representation geometry,

visualized via OpenGL.

Contributors' Guide To BRL-CAD

More Cowbell

Not all of BRL-CAD's capabilities lend themselves well to pretty pictures, but some are

definitely worth mentioning. Among the thousands of features in BRL-CAD, here are

some additional capabilities that are central to our project ethos.

Geometric Analysis

A particular strength of the BRL-CAD software lies in its ability to build and analyze

realistic models of complex objects. There are a number of features aimed at

inspecting, preparing, verifying, and validating geometry models. Single-ray sampling

can be used for measuring thicknesses or distances, and certain 3D analyses are

possible (such as calculating volume, centroids, and moments of inertia). BRL-CAD also

has numerous facilities for detecting and resolving assembly or part interferences where

two objects spatially overlap each other.

High-Performance Design

BRL-CAD is designed from the ground up with performance in mind. Considerable

attention has been put into in-memory and on-disk data storage efficiency. BRL-CAD is

capable of handling complex geometry models that are often impossible to open with

other systems without changing hardware requirements. BRL-CAD's ray tracing

infrastructure is one of the fastest in the world for implicit geometry representations and

is continually seeking performance advancements for other explicit representation

types, such as polygonal mesh geometry and NURBS surface models. BRL-CAD's

distributed ray tracing support is recognized as the world's first "real-time" ray tracing

implementation, achieving several frames per second in the 1980s.

Symmetric Multi-Processing

BRL-CAD efficiently leverages symmetric multi-processing (SMP) capabilities of desktop,

server, and supercomputing systems, where an arbitrary number of processing cores

can be put to work on a computational task. BRL-CAD's ray tracing library is commonly

leveraged for performing highly detailed geometric analysis, driving third-party

simulations, and producing animations.

Contributors' Guide To BRL-CAD

Modular Architecture

As a large software package developed over a relatively long period of time, BRL-CAD

has necessarily been designed and evolved with modularity in mind. Functionality is

implemented across hundreds of application modules, commands, and libraries

designed to work together. Hundreds of application binaries work together supporting

efficient customizable workflows. Core geometry editing capabilities are implemented

as commands that can be easily extended, replaced, or improved upon. All

functionality and features are built on top of a core set of libraries that encapsulate

common capabilities. One of the best ways to get involved is to add a new module or

improve an existing one.

Cross-Platform Portability

BRL-CAD has an extensive history of investment in and attention toward cross-platform

portability. This heritage includes systems such as a DEC VAX-11/780 running 4.3 BSD,

DECStations running ULTRIX, Silicon Graphics machines running IRIX, Cray

supercomputers running UNICOS, and so much more. Today, BRL-CAD's hardware

support includes everything from minimal laptops and desktops to gigantic distributed

supercomputers. And it is commonly run on Linux, Windows, Mac OS X, BSD, Haiku,

Solaris, and other desktop operating systems. We aim to be "embarrassingly portable."

ISO STEP 10303

STandard for the Exchange of Product Model Data (STEP) is an ISO standard describing

a product's full life cycle. One small portion of that gigantic standard describes a

complex geometry file format that fortunately has been adopted by most commercial

CAD systems. BRL-CAD is proud to be one of the few open source software systems that

is able to read and write STEP geometry files.

Performance Benchmark

The BRL-CAD Benchmark provides a practical metric of real-world performance.

Correlated with a longstanding heritage of providing verifiable and repeatable

behavior throughout the package, the Benchmark compares a given compilation's ray

tracing performance against the results from one of the very first systems to support BRL-

CAD: a VAX 11/780 running BSD. The mathematically intensive computations exercise

the processing unit, system memory, various levels of data and instruction cache, the

operating system, thread concurrency efficiency, data coherency, and compiler

optimization capabilities. The performance results let you weigh the relative

Contributors' Guide To BRL-CAD

computational strength of a given platform. With the right controls in place, the

Benchmark can tell you whether a given operating system is more efficient than

another, whether a particular compiler really makes a difference, or just how much of

an improvement a particular piece of hardware provides. We have results tracing back

several decades of computing.

2. DEVELOPERS

Working with Our Code

The Big Picture

The source code and most project data are stored in a Subversion4 version control

system for change tracking and collaborative development. Trunk development is

generally stable, but cross-platform compilation is not guaranteed. A separate branch

(named STABLE) provides a higher level of quality assurance. Every released version of

BRL-CAD is tested and tagged.

The project aims for an It Just Works approach to compilation whereby a functional

build of BRL-CAD is possible without needing to install more than a compiler, CMake,

and a build environment--for example, GNU Make or Microsoft Visual Studio. BRL-CAD

provides all of the necessary third-party dependencies for download and compilation

convenience within source distributions but by default will build using system versions of

those dependencies if available.

As with any large system that has been under development for a number of years,

there are vast sections of code that may be unfamiliar, uninteresting, or even daunting.

BRL-CAD consists of more than 1 million lines of source code spanning more than

20 foundation libraries and 400 application modules.

The majority of BRL-CAD is written in highly portable C and C++, with some GUI

and scripting components written in Tcl/Tk1. There is also some support for, and

bindings to, other languages available. POSIX2 shell scripts are used for

deployment integration testing. BRL-CAD uses the CMake3 build system for

compilation and unit testing.

http://en.flossmanuals.net/contributors-guide-to-brl-cad/code-overview/code-overview#InsertNoteID_10
http://en.flossmanuals.net/contributors-guide-to-brl-cad/code-overview/code-overview#InsertNoteID_6
http://en.flossmanuals.net/site_static/xinha/popups/blank.html#InsertNoteID_21
http://en.flossmanuals.net/site_static/xinha/popups/blank.html#InsertNoteID_18

Contributors' Guide To BRL-CAD

Don't panic. BRL-CAD has been intentionally designed with layering and modularity in

mind.

You can generally focus in on the enhancement or change that interests you without

being too concerned with other portions of the code. You should, however, do some

basic research to make sure what you plan to contribute isn't already in the BRL-CAD

code base.

History of the Code

As mentioned previously, the initial architecture and design of BRL-CAD began in 1979.

Development as a unified package began in 1983. The first public release was in 1984.

And on December 21, 2004, BRL-CAD became an open source project5.

BRL-CAD is a mature code base that has remained active over decades due to

continual attention on design and maintainability. Since the project's inception, more

than 200 people have directly contributed to BRL-CAD. The project has historically

received support from numerous organizations within academia, commercial industry,

various government agencies, and from various independent contributors. We credit all

contributors in BRL-CAD's authorship documentation6.

The following diagram illustrates how the number of lines of code in BRL-CAD has

changed over time:

System Architecture

BRL-CAD is designed based on a UNIX7 methodology of the command-line services,

providing many tools that work in harmony to complete a specific task. These

tools include geometry and image converters, signal and image processing tools,

various raytrace applications, geometry manipulators, and much more.

To support what has grown into a relatively large software system, BRL-CAD takes

advantage of a variety of support libraries that encapsulate and simplify application

development. At the heart of BRL-CAD is a multi-representation ray tracing library

named LIBRT. BRL-CAD specifies its own file format (files with the extension .g or .asc) for

storing information on disk. The ray tracing library uses a suite of other libraries for other

basic application functionality.

http://en.flossmanuals.net/contributors-guide-to-brl-cad/code-overview/code-overview#InsertNoteID_7
http://en.flossmanuals.net/contributors-guide-to-brl-cad/code-overview/code-overview#InsertNoteID_9
http://en.flossmanuals.net/contributors-guide-to-brl-cad/code-overview/code-overview#InsertNoteID_19

Contributors' Guide To BRL-CAD

Tenets of Good Software

BRL-CAD's architecture is designed to be as cross-platform and portable as is

realistically and reasonably possible. As such, BRL-CAD maintains support for many

legacy systems and devices provided that maintaining such support is not a

significant burden on new development.

The code adheres to a published change deprecation and obsolescence

policy8 whereby features that have been made publicly available are not removed

without appropriate notification. Generally there should be a compelling motivation to

remove any existing functionality, but improvements are encouraged.

BRL-CAD has a longstanding heritage of maintaining verifiable, validated, and

repeatable results in critical portions of the package, particularly in the ray tracing

library. BRL-CAD includes regression tests that will compare runtime behavior against

known results and report any deviations from previous results as failures. Considerable

attention is put into verification and validation throughout BRL-CAD. Incorrect behavior

does not need to be preserved simply to maintain consistency, but it is rare to find

genuine errors in the baseline testing results. So, anyone proposing such a behavior

change will have to conclusively demonstrate that the previous result is incorrect.

Code Layout

The basic layout of BRL-CAD's source code places public API headers in the top-

level include directory and source code for both applications and libraries in

the src directory. The following is a partial listing of how the code is organized in a

checkout or source distribution. Note that some subdirectories contain a README file

with more details on the content in that directory.

Applications & Resources
db/

 Example geometry

doc/

 Project documentation

doc/docbook

 User documentation in XML format

 See doc/docbook/README for more details

include/

 Public API headers

http://en.flossmanuals.net/contributors-guide-to-brl-cad/code-overview/code-overview#InsertNoteID_8

Contributors' Guide To BRL-CAD

regress/

 Scripts and resources for regression testing

src/

 Application and library source code

 See src/README for more details

src/conv/

 Geometry converters

src/fb/

 Tools for displaying data in windows

src/mged/

 Main GUI application: Multi-device Geometry EDitor

src/other/

 3rd party frameworks (Tcl/Tk, libpng, zlib, etc.)

src/proc-db/

 Examples on creating models programmatically

src/rt*/

 Ray tracing applications

src/util/

 Image processing utilities

Libraries
src/libbn/

 Numerics library: vector/matrix math, random number generators, polynomial

math, root solving, noise functions, and more

src/libbu

 Utility library: string handling, logging, threading, memory management,

argument processing, container data structures, and more

src/libgcv/

 Geometry conversion library for importing or exporting geometry in various

formats

src/libged/

 Geometry editing library containing the majority of our command API

src/libicv/

 Image conversion library for importing, processing, and exporting image data

src/libpkg/

 Network "package" library for basic client-server communication

src/librt/

Contributors' Guide To BRL-CAD

 Ray tracing library including routines for reading, processing, and writing

geometry

src/libwdb/

 Simple (write-only) library for creating geometry

src/lib*/tests/

 API Unit tests

Code Conventions

BRL-CAD has a STABLE branch in SVN that should always compile and run on all

supported platforms. The primary development branch trunk, unlike STABLE, is generally

expected to compile but may occasionally fail to do so during active development.

Languages

The majority of BRL-CAD is written in ANSI/POSIX C with the intent of strictly conforming

with the C standard. The core libraries are all C API, though several--such as the LIBBU

and LIBRT libraries--use C++ for implementation details. Our C libraries can use C++ for

implementation detail, but they cannot expose C++ in the public API.

Major components of the system are written in the following languages:

 STEP and NURBS boundary representation support: C++

 The MGED geometry editor: a combination of C, Tcl/Tk, and Incr Tcl/Tk

 The BRL-CAD Benchmark, build system, and utility scripts: POSIX-compliant Bourne

Shell Script

 Initial implementation of a BRL-CAD Geometry Server: PHP

Source code files use the following extensions:

 C files: .c

 Header files: .h

 C++ files: .cpp

 PHP files: .php

 Tcl/Tk files: .tcl or .tk

 POSIX Bourne-style shell scripts: .sh

 Perl files: .pl (program) or .pm (module)

With release 7.0, BRL-CAD has moved forward and worked toward making all of the

software's C code conform strictly with the ANSI/ISO standard for C language

Contributors' Guide To BRL-CAD

compilation (ISO/IEC 9899:1990, or c89). Support for older compilers and older K&R-

based system facilities is being migrated to build system declarations or preprocessor

defines, or is being removed outright. You can, however, make modifications that

assume compiler conformance with the ANSI C standard (c89).

Coding Style

To ensure consistency, the coherence of the project, and the long-term maintainability

of BRL-CAD, we use a defined coding style and conventions that contributors are

expected to follow. Our coding style is documented in the HACKING file of any source

distribution.

Our style may not be your preferred style. While we welcome discussion, we will always

prefer consistency over any personal preference. Contributions that do not follow our

style will generally be rejected until they do.

Here are some highlights of our style:

 Global variables, structures, classes, and other public data containers are

discouraged within application code. Do not add any new global variables to

existing libraries. Global variables are often a quick solution to some deeper

coding problem. However, they carry significant maintenance costs, introduce

complexity to the code, make multi-threading support more costly, pollute the

public API (symbol-wise at a minimum), increase security risks, are error-prone to

use, and usually complicate future efforts to refactor and restructure the code.

Using static variables (whether function- or static/file-scoped) is a viable

alternative. Restructuring the logic to not be stateful is even better.

 Exact floating point comparisons are unreliable without requiring IEEE-compliant

floating point math, but BRL-CAD does not require such math for portability and

for performance reasons. When floating point comparisons are necessary, use

the NEAR_EQUAL and NEAR_ZERO macros with a specified tolerance or the

EQUAL and ZERO macros where a tolerance is indeterminate. All the macros are

available by including bn.h, part of libbn.

 The code should strive to achieve conformance with the GNU coding standard

with a few exceptions. One such exception is not using the GNU indentation

style, but instead using the BSD KNF indentation style, which is basically the K&R

indentation style with character indentation consistent with the file that you're

editing. If this is confusing, use spaces to indent and run the sh/ws.sh script to

convert spaces to tabs. We value consistency to preserve maintainability.

 Stylistic whitespace

 - No space immediately inside parentheses.

Contributors' Guide To BRL-CAD

 while (1) { ... /* ok */

 for (i = 0; i < max; i++) { ... /* ok */

 while (max) { ... /* discouraged */

 - Commas and semicolons are followed by whitespace.

 int main(int argc, char *argv[]); /* ok */

 for (i = 0; i < max; i++) { ... /* ok */

 - No space on arrow operators.

 structure->member = 5; /* ok */

 structure -> member = 5; /* bad */

 - Native language statements (if, while, for, switch, and return) have a separating

space; functions do not.

 int my_function(int i); /* ok, no space */

 while (argc--) ... /* ok, has space */

 if(var == val) /* discouraged */

 switch(foo) ... /* discouraged */

 - Comments should have an interior space and be without tabs.

 /** good single-line doxygen */

 /* good */

 /*bad*/

 /* discouraged */

 /* discouraged */

 /**

 * good:

 * multiple-line doxygen comment

 */

Contributors' Guide To BRL-CAD

 Naming symbols

Variable and public API function names should almost always begin with a lowercase

letter.

 double localVariable; /* ok */

 double LocalVariable; /* bad (looks like class or constructor) */

 double _localVar; /* bad (looks like member variable) */

Do not use Hungarian notation or its variations to show the type of a variable. An

exception can be made for pointers on occasion. The name should be concise and

meaningful--typing a descriptive name is preferred to someone spending time trying to

learn what the name of the variable means.

 char *name; /* ok */

 char *pName; /* discouraged for new code, but okay */

 char *fooPtr; /* bad */

 char *lpszFoo; /* bad */

Constants should be all upper-case with word boundaries optionally separated by

underscores.

 static const int MAX_READ = 2; /* ok */

 static const int arraySize = 8; /* bad */

Public API (global) function names should be in lowercase with underscores to separate

words. Most functions within the core libraries are named with the following

convention: [library]_[group]_[action]

 bu_vls_strcat()

 bn_mat_transpose()

Naming exceptions are allowed where the API intentionally mirrors some other familiar

programming construct--for example, bu_malloc()+bu_free())--but be as consistent as

possible within a file and across a library's API.

 BRL-CAD uses The One True Brace Style from BSD KNF and K&R9. Opening braces

should be on the same line as their statement; closing braces should line up with

that same statement. Functions, however, are treated specially, and we place

their opening braces on separate lines.

http://en.flossmanuals.net/site_static/xinha/popups/blank.html#InsertNoteID_11

Contributors' Guide To BRL-CAD

static int

 some_function(char *j)

 {

 for (i = 0; i < 100; i++) {

 if (i % 10 == 0) {

 j += 1;

 } else {

 j -= 1;

 }

 }

 }

1. http://www.tcl.tk/^

2. http://en.wikipedia.org/wiki/POSIX^

3. http://www.cmake.org/^

4. http://subversion.apache.org/^

5. http://developers.slashdot.org/story/05/01/08/1823248/us-army-research-lab-

opens-brl-cad-source^

6. See the AUTHORS file in a source distribution.^

7. http://en.wikipedia.org/wiki/Unix^

8. See the CHANGES file in a source distribution.^

9. http://en.wikipedia.org/wiki/Indent_style^

http://www.tcl.tk/
http://www.tcl.tk/
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/POSIX
http://www.cmake.org/
http://www.cmake.org/
http://subversion.apache.org/
http://subversion.apache.org/
http://developers.slashdot.org/story/05/01/08/1823248/us-army-research-lab-opens-brl-cad-source
http://developers.slashdot.org/story/05/01/08/1823248/us-army-research-lab-opens-brl-cad-source
http://developers.slashdot.org/story/05/01/08/1823248/us-army-research-lab-opens-brl-cad-source
http://en.flossmanuals.net/contributors-guide-to-brl-cad/code-overview/code-overview#InsertNoteID_9_marker10
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Unix
http://en.flossmanuals.net/contributors-guide-to-brl-cad/code-overview/code-overview#InsertNoteID_8_marker9
http://en.wikipedia.org/wiki/Indent_style
http://en.wikipedia.org/wiki/Indent_style

Contributors' Guide To BRL-CAD

4. Appendix: Resources and Examples

Example Code: Root Solving

#include "common.h"

#include "bu.h"

#include "vmath.h"

#include "bn.h"

#include "raytrace.h"

int

main(int argc, char *argv[])

{

 bn_poly_t equation; /* holds our polynomial equation */

 bn_complex_t roots[BN_MAX_POLY_DEGREE]; /* stash up to six roots */

 int num_roots;

 if (argc > 1)

 bu_exit(1, "%s: unexpected argument(s)\n", argv[0]);

 /***

 * Linear polynomial (1st degree equation):

Root solving is (among other things) a key step in the raytracing of many of BRL-CAD's

primitives. The following examples illustrate how to solve various types of polynomial

equations using BRL-CAD's root solver.

Contributors' Guide To BRL-CAD

 * A*X + B = 0

 * [0] [1] <= coefficients

 */

 equation.dgr = 1;

 equation.cf[0] = 1; /* A */

 equation.cf[1] = -2; /* B */

 /* print the equation */

 bu_log("\n*** LINEAR ***\n");

 bn_pr_poly("Solving for Linear", &equation);

 /* solve for the roots */

 num_roots = rt_poly_roots(&equation, roots, "My Linear Polynomial");

 if (num_roots == 0) {

 bu_log("No roots found!\n");

 return 0;

 } else if (num_roots < 0) {

 bu_log("The root solver failed to converge on a solution\n");

 return 1;

 }

 /* A*X + B = 0

Contributors' Guide To BRL-CAD

 * 1*X + -2 = 0

 * X - 2 = 0

 * X = 2

 */

 /* print the roots */

 bu_log("The root should be 2\n");

 bn_pr_roots("My Linear Polynomial", roots, num_roots);

 /***

 * Quadratic polynomial (2nd degree equation):

 * A*X^2 + B*X + C = 0

 * [0] [1] [2] <=coefficients

 */

 equation.dgr = 2;

 equation.cf[0] = 1; /* A */

 equation.cf[1] = 0; /* B */

 equation.cf[2] = -4; /* C */

 /* print the equation */

 bu_log("\n*** QUADRATIC ***\n");

 bn_pr_poly("Solving for Quadratic", &equation);

Contributors' Guide To BRL-CAD

 /* solve for the roots */

 num_roots = rt_poly_roots(&equation, roots, "My Quadratic Polynomial");

 if (num_roots == 0) {

 bu_log("No roots found!\n");

 return 0;

 } else if (num_roots < 0) {

 bu_log("The root solver failed to converge on a solution\n");

 return 1;

 }

 /* A*X^2 + B*X + C = 0

 * 1*X^2 + 0*X + -4 = 0

 * X^2 - 4 = 0

 * (X - 2) * (X + 2) = 0

 * X - 2 = 0, X + 2 = 0

 * X = 2, X = -2

 */

 /* print the roots */

 bu_log("The roots should be 2 and -2\n");

 bn_pr_roots("My Quadratic Polynomial", roots, num_roots);

 /***

Contributors' Guide To BRL-CAD

 * Cubic polynomial (3rd degree equation):

 * A*X^3 + B*X^2 + C*X + D = 0

 * [0] [1] [2] [3] <=coefficients

 */

 equation.dgr = 3;

 equation.cf[0] = 45;

 equation.cf[1] = 24;

 equation.cf[2] = -7;

 equation.cf[3] = -2;

 /* print the equation */

 bu_log("\n*** CUBIC ***\n");

 bn_pr_poly("Solving for Cubic", &equation);

 /* solve for the roots */

 num_roots = rt_poly_roots(&equation, roots, "My Cubic Polynomial");

 if (num_roots == 0) {

 bu_log("No roots found!\n");

 return 0;

 } else if (num_roots < 0) {

 bu_log("The root solver failed to converge on a solution\n");

Contributors' Guide To BRL-CAD

 return 1;

 }

 /* print the roots */

 bu_log("The roots should be 1/3, -1/5, and -2/3\n");

 bn_pr_roots("My Cubic Polynomial", roots, num_roots);

 /***

 * Quartic polynomial (4th degree equation):

 * A*X^4 + B*X^3 + C*X^2 + D*X + E = 0

 * [0] [1] [2] [3] [4] <=coefficients

 */

 equation.dgr = 4;

 equation.cf[0] = 2;

 equation.cf[1] = 4;

 equation.cf[2] = -26;

 equation.cf[3] = -28;

 equation.cf[4] = 48;

 /* print the equation */

 bu_log("\n*** QUARTIC ***\n");

 bn_pr_poly("Solving for Quartic", &equation);

Contributors' Guide To BRL-CAD

 /* solve for the roots */

 num_roots = rt_poly_roots(&equation, roots, "My Quartic Polynomial");

 if (num_roots == 0) {

 bu_log("No roots found!\n");

 return 0;

 } else if (num_roots < 0) {

 bu_log("The root solver failed to converge on a solution\n");

 return 1;

 }

 /* print the roots */

 bu_log("The roots should be 3, 1, -2, -4\n");

 bn_pr_roots("My Quartic Polynomial", roots, num_roots);

 /***

 * Sextic polynomial (6th degree equation):

 * A*X^6 + B*X^5 + C*X^4 + D*X^3 + E*X^2 + F*X + G = 0

 * [0] [1] [2] [3] [4] [5] [6] <=coefficients

 */

 equation.dgr = 6;

 equation.cf[0] = 1;

Contributors' Guide To BRL-CAD

 equation.cf[1] = -8;

 equation.cf[2] = 32;

 equation.cf[3] = -78;

 equation.cf[4] = 121;

 equation.cf[5] = -110;

 equation.cf[6] = 50;

 /* print the equation */

 bu_log("\n*** SEXTIC ***\n");

 bn_pr_poly("Solving for Sextic", &equation);

 /* solve for the roots */

 num_roots = rt_poly_roots(&equation, roots, "My Sextic Polynomial");

 if (num_roots == 0) {

 bu_log("No roots found!\n");

 return 0;

 } else if (num_roots < 0) {

 bu_log("The root solver failed to converge on a solution\n");

 return 1;

 }

Contributors' Guide To BRL-CAD

 /* print the roots */

 bu_log("The roots should be 1 - i, 1 + i, 2 - i,2 + i, 1 - 2*i, 1 + 2*i \n");

 bn_pr_roots("My Sextic Polynomial", roots, num_roots);

 return 0;

}

